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The Lax-Wendroff scheme can be freed of spurious oscillations by introducing
conservative smoothing. In this paper the approach is first tested in 1-D modeling
equations and then extended to multidimensional flows by the finite volume method.
The scheme is discretized by a space-splitting method on an adaptive quadrilat-
eral grid. The artificial viscosity coefficients in the conservative smoothing step are
specially designed to capture slipstreams and vortices. Algorithms are programmed
using a vectorizable data structure, under which not only the flow solver but also the
adaptation procedure is well vectorized. The good resolution and high efficiency of
the approach are demonstrated in calculating both unsteady and steady compressible
flows with either weak or strong shock wavese) 1999 Academic Press

Key Wordscentral scheme; artificial dissipation; conservative smoothing; vector-
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1. INTRODUCTION

Consider the convection equation
Ut 4 cuy = 0, (1)

wherec is a wave speed. Independent variables are tiared spatial coordinate. Among
finite difference schemes for (1), the second-order Lax—Wendroff scheme is one of the
important, due to its uniqueness for linear equations and its essential role as the gui
for many schemes. A well-known deficiency of the scheme is that it may produce spul
oscillations around discontinuities.

In order to remove the unavoidable oscillations, artificial dissipation [21] is often adc
but the amount of dissipation necessary is not clearly known. Artificial dissipation term:
usually designed to be second order or less in order to maintain the accuracy of the or
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144 SUN AND TAKAYAMA

scheme. However, an exact solution of Navier—Stokes equations shows that the thick
of a shock wave changes linearly with the physical viscosity coefficient (see for exam
[15, p. 266]). If we try to numerically imitate the physical dissipation by an artificial on
and attempt to produce a shock wave in a few cells, the artificial viscosity coefficient sho
also be a linear function of the cell size, or the coefficient should be first order. Adding
first-order term to (1), it becomes

AX2
Ut + CUy = E(Sux)x, 2

whereg is a dimensionless artificial viscosity coefficient. Equation (2) can be split into tt
convection step

O +clxy=0 3)
and thesmoothing step
AX?
UI == F(SUX)X. (4)

The second-order Lax—Wendroff scheme is employed to solve the convection step.
computational sequence of the two steps is trivial because the difference is only at the
time step. In the smoothing step, we propose a viscosity coefficient

0o, if ¢ < eq;
&= {82, if ¢ > e, ®)
where
1/20" Ax?
- ‘ (6)
' AX

ande; = 0.7, ¢, = 1/4. This nonlinear coefficient does not deteriorate the order of the Lay
Wendroff scheme. The valug = 0.7 was optimized by numerical experiments. Anothel
valuee, = 1/4 may dissipate spurious oscillations with the shortest wavelength most e
ciently. The indicator is a measure of the degree of flow variations. Further discussio
on these parameters will be presented in Section 2.

The first successful example of a central scheme with nonlinear dissipation, to our knc
edge, is that of Boris and Book’s antidiffusion method or flux-corrected-transport (FC
method [3]. The approach can be interpreted as having two stages:

1. adding artificial viscosity everywhere during solving of the convection equation
2. recovering the lost accuracy in the first stage by applying negative diffusion eve
where except near extrema where oscillations might occur.

Note that the net diffusion is coupled in solving the convection equation. If we sum the
two stages and rearrange the dissipation order, a simpler logic is:

1. compute the convection equation without any additional artificial viscosity;
2. add artificial viscosity in the position where oscillations might occur.

These are just the convection step and the smoothing step. It is seen that the smoo
method is simpler and hopefully more efficient in removing oscillations since the dis
pation is added after solving the convection equation. A one-step scheme which cal
proven to be TVD for the scalar convection equation will be presented in a separate pz
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Actually, the efficiency of the smoothing step in removing oscillations has been recogn
for many years. It was applied to suppress the instability in solving the K-dV equation
Engquistet al.[5] devised a few nonlinear filtering algorithms in conjunction with numer
cal schemes. Shyat al.[16] further showed that these filters could be a remedy to elimine
the oscillations in a few model problems. They also numerically demonstrated the eff
of a filter on waves with different wavelengths. Their observations will be explained by
spectral analysis in Section 2 (Fig. 2b). However, a similar filter which they used had b
generally tested in solving Euler equations about a decade before by Russian colle:
([9], and references therein cited). They tried to correct the nonmonotonic property of
MacCormack scheme. A recent numerical example can be found in [6]. However, this re
still suffers from “quivering” contours and excessive smoothness across a slipstream
to now all authors only tested the smoothing methods on structured grids.

Inthe presentwork, the proposed smoothing methodiis first tested on 1-D model prob
and then extended to adaptive unstructured quadrilaterals by the finite volume method
robustness of the approach is validated by calculating a variety of gas dynamic probl
This paper is organized as follows. Section 2 describes the performance of the smoo
method in solving the linear wave equation and the 1-D Euler equations. Section 3
forward a vectorized locally adaptive method which will be combined with the flow solv
Section 4 is devoted to the smoothing step and the convection step on unstructured qt
laterals. The vectorization of the approach is also discussed. Section 5 gives nume
examples for unsteady and steady flow calculations. Section 6 summarizes the pape
remarks on what can be improved in future.

2. MODEL PROBLEMS

2.1. The Scalar Wave Equation

For the convection step (3), the Lax-Wendroff scheme reads
2
n

~ o o
r i E(uinﬂ - uirLl) + ?( i+1 2u + ul 1) @)

U:

i =u

whereo = c |s the CFL number. The smoothing step (4) is conservatively discretized
the central dlfference

u:’\+1 n+1+8|+1/2( :"Ii]ﬁ!. un+1) — & 1/2( n+1 Gn+1) (8)

andej 112 = Max(ei, €+1). Note that for constant= ¢, (8) becomes
ur‘I+l _ uf‘H—l +& ( Ir‘l_—:]:!. 2un+1 + ur‘H—l) (9)

Sinces; is independent oA x andAt, (9) is simply to smooth the solution of (7). Itis clear
that fore, = 0 the smoothing step has no influence on the solution of the convection s
so it does not change the accuracy; butfo# 0 it smoothes the solution and decreases tt
accuracy to first order. Numerically (6) is discretized, by a central difference for a unifc
grid, to give

Ui +1 + Uj—1 — 2U;]|

= , 10
¢ g0 + |Uj41 — Uj_1] (10)

whereeg is a small value to prevent a zero denominator for constaagions.
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FIG. 1. Five representative stages¢f

The ratio¢ in (10) plays an essential role in limiting the artificial viscosity in (5).
Understanding its significance is helpful in choosing the paramet&igure 1 shows five
representative stages®f For any linear functionp is always equal to O; for a monotonic
function, ¢ is not larger than 1; for the critical case of a monotonic function with shar
changesg =1, if there is an extremum in a functiog,at the extremum is greater than 1;
for the worst case of an oscillation with wavelength)?, the ratiop approaches infinity.
Therefore, the rati@ is a quantitativeindicator of whether the function is smooth or
oscillating as well as providing some information about the properties of the smooth anc
oscillating regions. The critical valug= 1 corresponds to shock discontinuities. As it is
generally known that sufficient artificial viscosity is needed near a shock discontinuity, c
can conclude that; should be close to 1. It can be easily proven by an algebraic meth
that a sufficient and necessary condition of a monotonic sequence i¢ that(see the
Appendix). Note thap = 1 or ¢ = oo is independent of the jump of a discontinuity or an
oscillation. It is an asset to be able to compute discontinuities with different strengths :
to remove various oscillations using the same indicator.

The stability limitation is solved by the von Neumann method. Considering a sing
harmonic wave applied to (9), one gets the amplification factor of the smoothingzstep,
by inserting

Gr‘H—l — eikX (11)

into (9), for¢g > e1,

Ut

Gs = anﬂ =1— 285 4 2¢5 cOFKAX). 12)
I
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The stability condition is
O<e<l/2 (13)

We are especially interested in the high-frequency wavekwith = 7, or wavelength A x.
Its amplification factor is

Gs = 1 — 4e,. (14)

Note that an oscillation cannot be further dampedsor 1/4, but changes the sign and may
generate a new extremum. A more suitable limitation of the smoothing stepds 8 1/4.
The most efficient dissipation for the shortest wave, correspondi@g t00, is when

e = 1/4. (15)

Using this value, a harmonic wave with wavelengthxXis dissipated in one smoothing
step. It will be invariably applied to solve one-dimensional Euler equations.

We now consider the effect ef on the harmonic wave. Substituting (11) into (10), on
may obtain

|cogkAX) — 1]
= ——————— ~tankAx/2 16
|sin(k AX)i | ankax/2). (16)
where the phase shift in the denominator has been negledteen the amplification factor
of the smoothing step becomes

(17)

G. — 1, if tan(kAXx/2) < ez;
7 \1— 28 + 2e5c09kAX),  if tan(KAX/2) > 1.

The amplification factor of the Lax—Wendroff scheme is (see, for example, [10])
|G| = |1 — 02 + 62 cogkAx) —io sin(kAX)], (18)

which is shown in Fig. 2a. The present scheme combines the Lax—Wendroff scheme
the smoothing step, so the amplification factofGgG_ w/|, which is shown in Fig. 2b for
e1=0.7 ande, = 1/4. It is seen that for long waves the factor is close to 1, and for sh
waves it jumps to a much smaller value, then decreases to zero for the wavelengttx.
The spectral meaning of the two parametgrande; is clear:e; defines the jump position
kAx = 2tarm(e1), while &> gives the minimum amplification factor- 4¢,. Fore; =0.7
andes, = 1/4, all oscillations withh. < 5Ax are efficiently dampened. This is not so for the
Lax—Wendroff scheme.

1 As pointed out by a reviewer, neglecting the phase shift here gives the wrong norm for stability analysis
gives some rough guide.
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FIG. 2. Amplification factors: (a) the Lax—Wendroff scheme; (b) the Lax—Wendroff scheme with the smoot
ing stepe; =0.7, 6, =1/4.

The effects of; ande, are further tested by numerical experiments. The results of tt
propagation of a step wave running at differepare shown in Fig. 3a fasr =0.95. It is
seen that; = 0.7 is small enough to obtain a virtually monotonic solution. The effect o
the artificial viscosity coefficient, is investigated by settings = 0.8 while changing..
Figure 3b shows the results, = 0 corresponds to the Lax—Wendroff scheme, plotted b
crosses. For all; > 0, the amplitudes of the spurious oscillations are attenuated. Note tt
only for e, = 1/4 is the numerical solution monotonic behind the sharp discontinuity, whi
the smoothing does not introduce much dissipation in front of it. Therefore, the followil
results appearing in this paper are rungt 0.7 ands; = 1/4.
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FIG. 3. Effects ofe; ande, on step wave convectioa,= 0.95: (a)s; =0.5,0.6,0.7,0.8,0.9, 1.0 fas = 1/4;
(b)e,=1/2,1/4, 1/8, 1/16, 0 fore; =0.8.

2.2. The Euler Equation

We now consider one-dimensional Euler equations, which in their complete 1-D fc
are

Ut + I:x =0
(19)
o pu
U= pu ], F=| puu+p |,
pe peu+ pu

wherep, u, andp are density, velocity, and pressure, respectively. The specific total ene
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e satisfies, for an ideal gas,

1
e=— P12 (20)
1p

We solve the equations in two steps, convection step and smoothing step. The conve
stepis discretized in a conventional way. To avoid the estimation of the Jacobians, a two-
Lax—Wendroff scheme, known as the Richtmyer scheme, is chosen. In the linear case
two-step scheme becomes identical to a single-step Lax—Wendroff scheme. The smoot
step is the same as that in the scalar case. The full scheme is

At
172
Ulrl&--kl//2 - 1/2( 111) 2AX (Flrjfl Fin) (21)
At 1/2 172

Urt =uh - Ax (RS — FM5) (22)

UM = 0N 4 gi40/o(00 — 0N — g1 (01 — O (23)
giy1/2 = Maxe;, & 41), & = e2(1 4 sign(¢ — 1)) /2

y s _ox
¢= |,0'|~+1+10|,1 ~;0|| s 1= 0.7,8221/4.

£00i + 10i41 — Pi-al

One can recognize (21) and (22) as being identical to the Richtmyer scheme. Comp
with the scalar case, the densityis’chosen as a key variable to indicate the regions witl
high gradients in the smoothing step (23). Since the density is always positive, the sr
valuesy is replaced withegp; to make the indicator dimensionless, and= 10~ during
computations. To limit artificial viscosity, another generally used key variable is pressu
which, however, fails to detect a contact surface. During our early computations, both |
variables were used. We found no clear differences when using just the density. The viscc
coefficiente; is written in a more concise form as in the relation @)ande, are simply
taken as constants. Since the parameters are unchanged, the scheme has no free par
in this sense.

The Sod shock tube problem [17] is solved by the scheme ferdl.4. The left-side and
right-side values are given as

(p,u, pL=(1,0,1),
(p,u, pr = (0.1,0,0.125).

The condition is an ordinary shock tube problem which has been tested by many auth
The initial diaphragm is at = 0.5, and 101 nodes are used. The solution contains a sho
wave, a contact surface, and expansion waves. The numerical results are shown in Fi
There are no significant oscillations associated with any discontinuities. Similar results
also obtained for other shock tube problems which will not be shown here. Concerning
computational efficiency, the scheme costs about 25% more CPU time than the orig
Lax—Wendroff scheme in the 1-D tests.

3. THE VECTORIZED LOCALLY ADAPTIVE ALGORITHM

In recent years, unstructured meshes have been widely used in computational
dynamics [20]. In order to have more accurate numerical solutions, various grid ada
tion methods have been successfully applied to solve problems with multiscale phys
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FIG. 4. 1-D shock tube problem: (a) pressure; (b) density; (c) velocity.
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A 4 B A

FIG.5. Cell-edge data structure: (a) cell information—a cell points to four edges; (b) edge information—
edge points to two neighboring cells.

phenomena, such as shock waves. In most shock-capturing calculations, a locally ref
grid may contain nodes which are orders of magnitude less than those of a uniform
achieving the same accuracy. These adaptive methods have reached a level of maturity
However, adaptation methods were usually organized for scalar execution, and the are
vector-adaptive algorithms is relatively unexplored [11]. To be able to vectorize the pi
cedure, we put forward a locally adaptive method for quadrilateral cells in this section
data structure is designed to vectorize the adaptation procedure as well as the flow sc
So, we start from a description of the data structure.

A fundamental nature of the data structure is that every cell points to its four edges,
every edge points to its two neighboring cells. The basic information saved for a cel
its location and the indices of four edges. The four edges are uniquely ordered. In Fig.
edges BC, CD, DA, AB are neighboring edges NE1, NE2, NE3, NE4, respectively. Eve
edge is defined as a directional segment, as shown in Fig. 5b. The direction assures th:
left of NE1, NE4 and the right of NE2, NE3 are the cell itself, while the right of NE1, NE:
and the left of NE2, NE3 correspond to the right, below, above, and left neighboring ce
respectively.

The basic information saved for an edge is the locations of its two ends and the indice
its left and right cells. Note that a cell never directly points to another cell but rather throu
their common edge. For instance, if celieeds the information from its right cel| then
it should get the right index of its NE1, as shown in Fig. 5b. It is clear that one adjace
connectivity only needs two memory reads during computation.

Basic cell-edge addressing is well known (see, for example, [14]). The novel feature
the present addressing is the definition of edge direction and edge order for a cell, whic
described above. This strict definition reduces conditional statements in the code, espec
in adaptation, and thus enhances the efficiency. Note that the definition requires no additi
memory, but stores the necessary information in the definite order. Another advantage o
data structure is its convenience in vectorization. Itis generally known that data depende
prevents vectorization. Since a cell does not refer to another cell except through an edge
operation on a cell is independent of other cells. This property simplifies the vectorizat
not only in solving conservation laws but also in refining and coarsening grids.

We first describe the adaptation procedure. The criterion for adaptation is based or
Taylor series expansion of density. The criterion is

Refine= Max[¢i, ¢j] > &
Coarse= Max[¢i, 9] < &c,
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FIG. 6. Cell-adjacent information.

whereRefineandCoarseare logical flags which indicate whether a cell needs to be refin
or coarseneds; ande. are threshold values for refinement and coarsening. Two er
indicators,¢; and¢;, are given by the ratio of the second-order derivative term to tl
first-order one in the Taylor expansion, so that

_ Piyaj D1y — 2p; - P+ Pij1 — 205
=0 ! : , | = ! . .
apij+1Pirrj — Pi—ajl api i+ 1Pi 41— Pi,j-1l

éi (24)
The locations of density appearing in (24) are shown in Fig. 6a. The tilde (*) denotes
the density is a newly updated one in solving the conservative laws which will be discus
in the next section. Two subscripts in (24) represent the locations opposit@, geliin
two directions. It does not imply that a two-dimensional array is used to save data, S
neighboring connectivity is obtained from the cell-edge data structure. Equation (24) is
exact ratio of the second-order term to the first-order one on a uniform grid. Because
ratio indicates an approximate solution error and its exact value is unnecessary, itis dir
extended to arbitrary quadrilateral grid.

There are three parameters in the criterienis initially designed to prevent a zero
denominator, and it can also filter extremely small flow variations. For example, if |
amplitude of the variations in some regions is much lessdgn, then the error indicators
are also small. Consequently cells will not be refined there. Three parameters are n
independent of flow conditions to achieve the most economical adaptation. We ch
&r =0.06, . =0.05, andx = 0.03 for all computations in this paper.

The refinement and coarsening procedures are handled separately. Both procedure
similar steps for vectorization:

1. handling the inside of cells which are flagged to be refined or coarsened,;
2. handling the edges of the flagged cells;
3. arranging memory.

Step 1 is based on cells and updates all inside information, such as deleting inside edge
adding finer cells; these are done without changing the status of other outside cells. Si
based on edges, renews every edge of refined or coarsened cells and its two neighl
cells, which may be done without influencing other edges. Following this strategy, one |
naturally remove the data dependency which often prevents vectorization in adaptatic
A cell to be refined must be divided into four subcellssons as shown in Fig. 7. If
an edge is split into two subedges, we call the edgmtherand the subedgetaughters
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FIG. 7. Refinement strategy: father cell ABCD is divided into four sons, EBFO, OFCG, HOGD, and AEOH

There are some options in the division. One is that the node inside can be optimize
get good shapes of the sons. In the present adaptation the node is set to the centroid
father cell. Another option is the locations of new nodes on the outside edges, usually a
centers. However, if an edge is a boundary, AB, for instance, we choose a new locatic
to make edge OE perpendicular to the boundary if this choice does not generate extrel
skewed cells. Only when all four sons are flaggedrseare they deleted and recovered to
their father cell.

In the refinement procedure, it is required that no two neighboring cells differ by ma
than one refinementlevel. This rule prevents pathologically large volume ratios under cer
circumstances. An illustration of this rule is shown in Fig. 8. If cell ABCD is one of th
coarsest cells, its level is set to 0. The refinement level of a son equals that of his fa
plus 1. In Fig. 8, the level of cells 1, 2, 3, and 4 is 1; the level of cells 5, 6, 7, and 8 is
and so on. The difference between levels of two neighboring cells may not be more tha
Refining cell 5 is then not allowed. The rule of one-level difference has also been usec
other authors (see, for example, [22]).

In unsteady calculations, the rule that two neighboring cells differ by no more than c
level may mismatch moving refined regions, say shock wave regions. Anillustration is gi
in Fig. 9. The refinement levels of cells in columamandb are 3; those in columrsandd

C B

11| 10 | i

12 | 9

D A

FIG. 8. The levels of refinement: refining cell 5 is not allowed.
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a moving shock wave
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...........

TR

L3 L2 L1

FIG. 9. Prerefinement. Cells in colummcannot be refined to capture the coming shock wave, because |
level of refinement in columd is lower. The cells in columd have to be prerefined.

are 2 and 1, respectively. A shock wave moving from left to right lies in the finest cells. T
shock wave will arrive at columain two time steps by using a high CFL number; then th
cellsin columre should be refined to be able to capture the shock wave. Since a shock v
can be resolved within two cells by a high-resolution scheme, cells in cotlame not
able to detect that the shock is coming based only on the information from its clo:
neighboring cells. The adaptation criterion then labels the cells in colynefine= .false,
and thus columa cannot be refined because of the rule. Consequently the shock wave m
into the region with coarser cells and is smeared dramatically. This indeed happened i
early unsteady calculations. To combat this problprarefinemenis introduced. Once a
cell cannot be refined due to the level difference between itself and its neighboring ¢
the neighboring cells should be prerefined. In the case shown in Fig. 9, the cells in col
d are prerefined, no matter what they are labeled.

Steps 1 and 2 change the status of some cells and edges, for example from sons to f:
Step 3 just cleans and arranges the memory, and divides all cells and all edges intc
groups, father/non-father and mother/non-mother, according to their updated status
non-mother edges are further divided into boundary/non-boundary edges. These cle
cations generate an efficient data structure for a flow solver. Figure 10 illustrates mer

1 Max Cell
Cell list

1 Max Edge
Edge list

FIG. 10. Memory organization.
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FIG. 11. The efficiency of vector processing of refinement and coarsening procedure.

strides of the edge list and the cell list after the adaptation procedure. All cell indices
saved in the cell list, while edge indices in the edge list. Both of them are constant stric
which is required for vectorization. The lists are very efficient especially for a flow solver u
ing the finite volume method, because non-fathers are just non-overlapping physical cor
volumes and non-mothers are the interfaces on which flux evaluations are conducted.

The adaptation subroutine includes 34 loops and about 1,400 FORTRAN lines. All loc
are vectorized. Its practical efficiency for vector processing is tested by refining one «
from level O to level 6 (4096 cells), and then coarsening the refined cells from level 6
level 0. Figure 11 shows the average CPU time normalized by 10,000 cells. No flow solve
computed in this test. The CPU time is decreased with increasing total cell numbers. W
the total cells are over 1,000, the speedup is about 30. This indicates that the adapt:
procedure is well vectorized.

4. THE FLOW SOLVER

In the flow solver, we combine the smoothing step and the space- or operator-split
convection step as

U™2 = L,L,SL,L,SU",

where S represents the smoothing stdpL, and LyL, represent the convection step.
Two steps will be explained in Sections 4.1 and 4.2, respectively. The use of this Stra
type splitting on the quad-tree grid can be found in [4]. Note that each time step condt
the smoothing once, which is more computationally efficient than smoothing twice in tv
directions. If the adaptation is used, it is always conducted before the smoothing step.
vector processing of the flow solver under the cell-edge data structure will be discusse
Section 4.3.

4.1. The Conservative Smoothing Step

The conservative smoothing is required to dampen oscillations generated in solving E
equations by the Lax—Wendroff scheme. In this subsection, we will describe how to rea
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this smoothing on an unstructured quadrilateral grid. In the smoothing step, we add arti
dissipation by solving

2
(Alt) V- (*-v0),

U =

whereU represent the conservative variables, aids a local grid sizes* is a diagonal
tensor of artificial viscosity. Following the finite volume approach, one gets

~ 1 ~ ~
Ui=Ui+WZSiJ(Uj—Ui)|j|ij|ij-nj, (25)

wherel;, l;; are the length of an interface and the distance between two neighboring cel
the interfacen; andl; are their unit vectors, respectively. A sketch of the geometry variabl
is shown in Fig. 12a. Vol is the volume of céjland} . sums the fluxes through four faces.
The local grid sizeAl has been taken &g in (25). The performance of a smoothing stej
just depends on the control of artificial viscosify at the interface.

a

A

FIG. 12. Geometrical definition of an interface.
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We first consider some requirements on a smoothing step in multidimensional flo
There are five basic physical phenomena in compressible flows: shock wave, expan
waves, contact surfaces, slipstreams, and vorfidés first three exist in one-dimensional
and multidimensional flows. They are locally close to be one-dimensional in multidime
sional flows. The smoothing step needs only to dissipate them along their propaga
direction, so that the most effective dissipatn=1/4 can be applied. However, the last
two are truly multidimensional phenomena. Although both slipstream and contact surf
are discontinuous in numerical simulations, contact surfaces will possibly generate spur
oscillations, but a slipstream usually does not because of its relatively low normal speed
thus low fluxes. In other words, a contact surface needs artificial viscosity, but a slipstre
does not. Furthermore, a solid boundary is similar to a slipstream, where the normal sy
is zero but the tangential speed is arbitrarily large. Low artificial dissipation at boundary
critical for the calculation of the boundary layer. Another multidimensional phenomen
is related to a vortex. The core of a vortex has a physical minimum value of density ¢
pressure. Conservative smoothing should be able to distinguish a vortex core from tt
unwanted extrema.

In brief, acceptable conservative smoothing should add sufficient dissipation arot
spurious oscillating regions in primary wave propagation direction, while it should n
influence other smooth regions, vortices, and slipstreams. The present smoothing cor
oftwo steps: first detecting oscillations and sharp gradients; then computing artificial visc
fluxes.

In detecting oscillations, we design indicators

Tx = Min[¢i (p), ¢i (0€), Max(¢i (), ¢i (V)]

. (26)
Ty = Min[¢;(p), ¢;(0€), Max(¢; (1), ¢j(¥))],
where the functiong; (¢) and¢; (¢) are defined as
i+1] T ¢i-1j — 20, ij iji-1— 26,
i () = |‘P+1,J+§0 1,j €0,J| ¢j((,0)= |‘P,1+1+‘P,j 1 (0,1| 27)

0bi +10it1) — ¢i-1jl’ eofi j + lgij+1— @i j-a1l’
with g =107%. Tx andTy are indicators in two directions, as shown in Fig. 6b.

Compared with the density indicator in the 1-D smoothing step (23), the speeds in t
directions are added in (26) to distinguish a vortex from a spurious oscillation. This is ba
on the understanding that the velocity in a vortex is usually free of extrema although the c
of it has a minimum of density. We suppose that these additional limitations have negligi
influence on detecting spurious oscillations, or spurious oscillations are the simultane
variation of velocity, density, and energy. If we use only the density in the indicator, as dc
in the 1-D calculations, the smoothing step can input excessive dissipation to a vortex
produce a “hollow” vortex core, as shown in Fig. 13a. This is verified by the indicator (2¢
as shown in Fig. 13b, where the spiral shape of the slipstream and the vortex core are cls
captured.

2 Slipstream and contact surface satisfy the same compatible conditions; that is, across them both pressu
the normal velocity are continuous. We distinguish them qualitatively by the difference of tangential speed ac
them. If the difference is small, it is a contact surface; if the difference is large, it is a slipstream. In experimel
slipstream is usually much thicker than a contact surface because of strong viscosity.
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FIG. 13. Comparison between two indicators: shock diffraction over‘ac@@ner,M; = 1.5. (a) 1-D density
indicator: a hollow vortex; (b) indicator (26).
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In order to add the dissipation only in oscillation directions, we define a vector artifici
coefficient

gi = Y(e2,0, Tx = e)nNx + ¥ (g2, 0, Ty > ex)ny, (28)
whereys is defined as

X, if z= .true.

Y, if z=.false (29)

V(X y,2) = {

Symbolsny andny are unit vectors, whose directions are shown in Fig. 6b. The criteric
(5) has been applied in (28) along two directions. In this way, the dissipation will be adc
only in oscillation directions. Functiotr in (29) is a vectorizable intrinsic function.

After oscillations and their directions are detected for all cells, the viscous coefficient
interface is given by

&ij = We(lei - nj| + lg5 - nj)/2, (30)
whereW, is a weight function. The weight is defined according to a local wave direction

_(dvij - nj)? +0/2
! dVij . dVij + &o

(1)

wheredv; is velocity difference between celland j which is approximately the direction
of wave propagation. The component alon®f the velocity difference is estimated as the
weight.

We note that if; is just the direction of wave propagation, théh= 1 (¢ is negligibly
small). It is clear that the artificial dissipation is the same as that in solving 1-D Eul
equations in the direction of wave propagation. Therefore one may expect that for
locally one-dimensional phenomena spurious oscillations are able to be dampened, as
in one-dimensional flows shown in Section 2. On the other hand, the weight (31) also sh
that artificial dissipation across a slipstream is very small, because the change of noi
velocity (dvj - nj)? is much less than the total chande; - dv; there. In the algorithm
W =Max[1/8, W] is adopted. The coefficier; at any boundary is always set to be
zero.

4.2. The Convection Step

In solving 2-D Euler equations on a structured grid, the two-step Lax—Wendroff sche
designed by Zwas (see [10, p. 259]) consists of three nodes in each dimension, which
stencil closest to the domain of physical wave propagation. However the scheme reqt
both cell-centered and cell-vertex addressings. It is very difficult for an unstructured d
structure especially with grid adaptation to efficiently provide two addressings together
the present paper the space-splitting method is chosen to avoid the cell-vertex addres
while the computational stencil used is still three in each dimension.
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FIG. 14. Splitting of velocity at interface.

Two-dimensional conservation laws are

i udv +/ F(uny, +vny) dl +/(PxnX + Pyny)dl =0, (32)
\ol
where
P p 0 0
| pu _ ou p 10
U= | F= s P=|o| P= 0
e pe+p 0 0

We write the Euler equations in this form for its convenience in describing the splitt
method. Let/, andv; denote the normal and the tangential velocity ef (u, v) oninterface
Q as shown in Fig. 14a. Then one may rewrite the second term in (32), as

Uny +vNy =V-N = (Vq + V) - N = Vp - N = UnNy + vpNy, (33)

then

o UdV+/ F(unnx+vnny)dl+/(Pxnx+Py ydl =0
Vol

) (34)

UdV+/(Fun+ Px)dx+/(Fvn+ P,)dy =0,
3'[ Vol

whereu, v, are two components of; in the Cartesian coordinates. Equation (34) is ju:
the conservative equations used for splitting. We split it into two equations

9 UdV+/(Fun+PX)dX_ (35)
3'[ \ol
and
d
UdV+/(Fvn+ P,)dy=0. (36)
3t \ol
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Transformation (33) is required to avoid spurious fluxes through a solid boundary whicl
not parallel to the coordinates as shown in Fig. 14b. Flows always move along the bounc
and the velocity normal to the boundary is zero. However, after one splits the veloc
directly according to the coordinates, betlandv have non-zero components normal to
the boundary, although the sum of them equals zero. Then, in solving the split equation
non-zero component introduces fluxes through the boundary, which is physically incorr
After the transformation, the splitting is based on the normal velocity which is zero
boundary, so the spurious fluxes disappear.

Equation (35) is discretized at half time step,

Un+1 —uU"— ﬁ (Fn+1/2un+l/2 + Pn+1/2)AX' (37)
Vol n X IN
The values at the half time step are predicted by locally computing the Lax—Friedric
scheme between two neighboring cells. The state at the interface Ceistd¢aken as the
distance-weighted one from two cells,

IR I

- Ui + ’
lR4+10 g1

Uc (38)

wherd g andl | are distances from cells to the edge cefitgas shown in Fig. 12b. The Lax—
Friedrichs scheme is then solved along directjoby assuming the flow is approximately
one dimensional there,

p™H? = pC + A[(pun* — (pu)R]

(Pu)E™"* = (pu)e + At [(pun‘uf + p* — (pu) Ul - pf] (39)
(pUnE™ = (pUn)c + At [(pUn) uF — (oun)RUR]
(p)E* = (pe)c + At [(p®) Ul + P ul — (p&)"uf + pRuf],

where superscript lettetsandR denote the states at céland j, respectivelyy, andu,
are components of velocity in directioisandn;j, as shown in Fig. 12a, for instance

L el
(our) (V)i - i (40)
(pun)* = (pv)i - njj,

and so on. The predicator step should chadse= (1/2) At/l;;. We modify At as follows,

12,  Tj <1/2
A‘L’=At/|ij Tij, 1/2 < Tij <3/4, (41)
3/4, 3/4 < T

or in a concise form,
At = Max([1/2, Min(3/4, Ti))]At/lij,

whereT;; is an indicator of flow variation, and;; =Max(|T; - nj|, |Tj - nj|) whereT; =
Txnx + Tyny. This modification generally introduces more dissipation around sharp d
continuities. The smoothing step combined with this modified Lax—Wendroff scheme wo
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FIG. 15. Computational stencil for the splitting method.

better. Since the modification keeps = 1/2At in continuous regions, it does not change
the accuracy there. The fluxes through the interface are then given by using the prec
values.

Equation (36) can also be discretized similarly. Let operdiqmandL , represent solving
two equations; then in one time step we have eith&r! = LyLxU"oruU |, Lyun.

It is observed that the splitting method requires three nodes in each dimension |
regular grid. This is explained in Fig. 15 by considering , splitting. StepL collects the
information alongk-axis as shown in Fig. 15a. Then stepfurther collects all information
from y-direction. Thus the stencil is finally three in each dimension as the shadow reg
shown in Fig. 15b.

Special treatments are needed to keep second order accuracy in space for inte
between cells with different refined leveRseudo-cellsre created for cells with a lower
refined level, as shown in Fig. 16. Cells A and C have different refined levels. The cos
one, cell A, should generate some pseudo-cells,asagdb. Pseudo-cell& andb will
have the same level as cell C. The conservative values of pseudo-cells are interpc
from their neighboring cells. For example these of pseudoacaié interpolated from cells
A, B, and C. All fluxes are evaluated between same level cells. The flux between c
A and C is computed by cell C and pseudo-eelbut the flux between cells A and B is
still computed by these two cells. Without these pseudo-cells some tiny fluctuations wi
appear on contours. lllustrations are given in Fig. 13, which are early computations witt
pseudo-cells.

FIG. 16. lllustration of pseudo-cells.
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4.3. Flow Solver under the Cell-Edge Data Structure

The flow solver can be efficiently constructed and easily vectorized under the cell-e
data structure. This is done following a routine which consists of four basic steps:

1. computing fluxes through non-mother non-boundary edges;

2. computing fluxes through non-mother boundary edges;

3. computing fluxes through mother edges by adding their daughters’ fluxes;
4. computing the sum of four fluxes for every cell.

The computation of fluxes through an edge requires only its two neighboring cells wh
indices are explicitly saved for every edge, so that the flux evaluation is easily vectoriz
Similar efficiency is also achieved for other steps by the cell-edge data structure.

It is clear that adjacent connectivity information can be directly obtained from the ce
edge data structure. However, to get the same information, the well-known quad-tree
octree structure often need to climb up to the root of the branch and then climb dowr
neighboring cells, which is difficult, if not impossible, to vectorize. The climbing proces
is avoided by using the present cell-edge data structure. Note that because of step 3, <
simply accumulates the fluxes of four edges irrespective of whether the edges are spl
not while preserving conservation.

The flow solver following the four steps has almost no conditional statements in deterrr
ing connectivity information, which is usually very difficult for locally adaptive algorithms
In fact, the only conditional statement is in step 2, where it deals with different types
boundaries. Thus, the data structure is highly efficient for solving the conservation law:

The global efficiency of all subroutines is measured by calculating a shock wave diffra
ing over a 90 corner. The test runs 400 time steps and uses about 10,000 cells (cell nun
cannot be fixed because of adaptation). The memory requirement for this computatic
nearly 2 megawords. The numerical results will be discussed in the following section.

Figure 17 shows the CPU time distribution on the main subroutines of the algorith
The flow solver takes 70% of the computational time. The remaining time is mainly spe

Flow Solver

5 Grid Adaptation
Geometry Update
(] Others

CPU(%)

FIG. 17. CPU time distribution on major subroutines.
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on grid adaptation and geometry update. The geometry update only computes cell vol
and edge lengths. It costs, of course, a very small portion of the total computation.
flow solver takes 6 times as much CPU time as that required by the geometry update
the grid adaptation only takes 1.7 times. These results show that both the flow solvel
the grid adaptation are computationally fast. According to hardware statistics, the ave
vector length is 117.6 (the maximum machine length is 128), and therefore the flow sc
and the adaptation are well vectorized.

The average CPU time requires aboutsiper cell per step. This speed is around tw
orders faster than that conducted in a workstation using upwind schemes with either ex:
approximate Riemann solvers [8, 23]. The efficiency is not only due to the well-vectori.
data structure but also due to the Euler solver, which is a central-difference scheme wit
conservative smoothing. (Note: All computations are carried out on a Cray C90 in sir
processor mode. The flow solver tested here does not include pseudo-cells which have
discussed in Section 4.2. Pseudo-cells increase computer time up to 50% depending
number of pseudo-cells.)

5. NUMERICAL EXAMPLES

In this section a few unsteady and steady gas dynamic problems are solved by the sc
presented in the previous sections. The ideal gas model and the ratio of specific |
y =1.4 are used. The parametgr= 0.7 and the artificial viscous coefficiesg =1/4 are
constant in all computations. Other parameters, for instance, the thresholds for refine
and coarsening shown in Section 3, are also kept constant. Although fine tuning of t
parameters can improve the resolution and efficiency a little, it will be demonstrated
these unchanged parameters give acceptable results for a variety of unsteady and
problems.

5.1. Unsteady Shock Diffraction

Shock wave diffraction over a 9@orner is conducted in this subsection. The geomet
consists of three ¥ 1 squares. Every square can be divided to many fine cells. A she
wave is initially at 0.5 to the left of the corner point. The CFL number is 0.9, and it
unchanged for unsteady computations. A discontinuity may pass one cell in one time
at such a high CFL number, so that the adaptation is performed at every time step.

Figure 18 gives a weak shock diffraction at three different levels of refinement. T
density contours are virtually independent of the grid adaptation. Of course, shock w.
become linearly sharper for high-level adaptations. Because the postshock flow is subs
expansion waves propagate upstream. The incident shock wave is gradually attenua
the downstream wall. These phenomena are resolved similarly on three different grid:

The recorded computer time further shows that the adaptation procedure is highl
ficient. The finest cells are economically distributed around shocks and vortices. In
example an additional level of refinement requires about 3.2 times as much CPU time
it is 8 times (4 times cells, and 2 times time steps) as much on a uniformly refined ¢
Although the adaptive unstructured algorithm runs a few times slower than a structured
a two-level refinement more than compensates for this factor.

The results of strong shock diffraction, fbts=2, 4, 8, 16, are shown in Fig. 19. Real
gas effects are not considered here, because the main object of this paper is not to inve:
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FIG. 18. Unsteady shock diffraction on adaptive grids with different levels of refinement, isopycnics a
grids: Mg=1.3, CFL=0.9. (a, b) levek 1, 4,683 cells, CP&-2.0 s; (c, d) levek 2, 6,744 cells, CPE6.2 s;
(e, f) level=3, 11,382 cells, CP&-20.4 s.
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physical phenomena. Three-level refinementis adopted, and it is 256 x 3 cells if using

a uniform grid. The required CPU time is no more than 35 s in each case. We emph:e
here the two parametets = 0.7 ande, = 1/4 are kept constant in calculating these shoc
waves. Combined with the results of weak shock diffraction shown in Fig. 18, it is cl
that the smoothing step efficiently cleans the oscillations behind shock waves with a \
range of strengths.

For strong shock diffraction, flow patterns close to the corner are similar. There
expansion waves, a slipstream and a secondary shock wave. These are well resolv
all shock strengths. The vortex is not observable for very strong shocks. A clear differe
between different shocks lies in their reflection configurations on the downstream wall.
foot of the Mg =2 shock is almost perpendicular to the wall; thlg =4 shock forms a
sharp turn there, but the waves behind it are somewhat continuous. The waves at the
for the Mg =8 case can be recognized as a sharp discontinuity or a reflected shock v
and then they form a Mach reflection and a very short Mach stem is seen; fioksthel 6
shock the Mach stem is no longer visible and the configuration is a regular reflection. Tl
changes qualitatively agree with experimental observations [2].

5.2. Unsteady Shock Reflection

Another basic unsteady shock phenomenon is shock reflection. A benchmark test |
for a shock wave withMg =2 moving over a 46wedge. A variety of humerical results
by different schemes and a few experimental photos are available in [19]. We repea
computation under the same condition. Figure 20 shows our numerical results on struc
and unstructured quadrilaterals.

The computation uses a 4-level refinement and its finest cells correspond toeé%22
grid which covers the whole computational domain for the structured grid. The CFL num
is 0.9, but the time step is somewhat limited by the smallest cells near the corner. Arc
1000 time steps are required and the CPU time is less than 1 min.

The wave configuration consists of an incident shock, a Mach stem, a reflected st
and a slipstream. These are clearly seen in the results on both grids. The slipstream ha
captured as sharply as shock waves. Shock thickness is not constant in the figures be
the background cells are of different sizes, as shown in Fig. 20b. The resolution of sh
is comparable with many other schemes [19], but the present computation requires r
less computer time.

5.3. Steady Channel Flows

Steady flows are computed in a channel with a compression corner, followed by
expansion corner, which is similar to that in [23]. The length of computation domair
4. Solutions are given at=4. The upper and lower surfaces of the channel are reflecti
conditions, with a supersonic inflow on the left, and outflow on the right. The inflow Ma
numbem = 2. The CFL number can be chosen slightly higher than 1 in steady computat
We compared the results computed at lower CFL numbers, and found no big differe
in pressure and density contours, but an increase in computer time. The grid adaptat
performed every three time steps. When using a refined grid, we calculdte fdion a
coarse grid to get a good initial state, then start the adaptation procedure and compt
tot =4. Computing time is reduced by nearly half using this simple strategy.
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FIG. 19. Unsteady shock diffraction for strong shock waves, isopycnics: €BL9, level=3, 20,000—
24,000 cells, CP&: 30-35 s. (aMs = 2.0; (b) M = 4.0; (c) M = 8.0; (d) Ms = 16.0.
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Figure 21 shows the results using three-level refinement. There is an attached sho
the compression corner. The shock is reflecting from the upper surface and forms a M
reflection. The reflected shock interacts with the Prandtl-Meyer fan starting from the cor
and then reflects from the lower surface as well. There is a discontinuity in the isopycn
emanating from the triple point and nearly going parallel to the upper surface, as show
Fig. 21a. This discontinuity is interpreted as being a slipstream because the pressure a
it is continuous, as shown in Fig. 21b.

FIG. 20. Unsteady shock reflection over a°4@edge for M=2, isopycnics and grids: CF:0.9,
level=4, 22,000-23,000 cells. (a, b) on a structured grid; (c, d) on an unstructured grid.
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FIG. 20—Continued

A shortcoming of the smoothing or filter in computing unsteady [6] and steady flo
[5] is the fluctuation of contours. The present approach has successfully overcome tr
is seen that both density and pressure contours are sufficiently smooth in expansion
regions even on a grid with different sized cells.

5.4. Shock Motion in a Circular reflector

Previous results are either steady flows or unsteady but self-similar flows. This subse
gives a truly unsteady result of shock wave moving in a circular reflector. The geom
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FIG.21. Steady tunnelflow over a 15ump on an adaptive gridl = 2.0, CFL= 1.6, level=3, 13,861 cells,
1,273 time steps, CPH 61.7 s. (a) isopycnics; (b) isobars; (c) corresponding grid.

of the reflector and initial grid are shown in Fig. 22. Only half of the domain is compute
because of symmetry.

The results are shown in Fig. 23 for incident shock Mach nunvbet 1.5. The initially
planar shock wave enters and diffracts at the entrance, resulting in a curved shock wave
foot of which is perpendicular to the wall, as seen in Fig. 23a. The foot of this curved shc
wave tends to lean forward with its propagation and eventually becomes Mach reflectior
seen in Fig. 23b. With further propagation of the shock wave, the Mach reflection transit
aregular reflection. A fully developed regular reflection is shown in Fig. 23c. In Fig. 23d t
incident shock has been completely reflected. It is seen that the adaptive grids are efficie
distributed around time-dependent sharp changing regions.

For quantitative comparison, the density distribution along the centerline is plotted
Fig. 24 at an instant when experimental data are available [18]. The numerical data
compared with those obtained by another adaptive flow solver [7], which is perform
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60 mm

FIG. 22. Physical geometry and unstructured quadrilateral grid.

on triangular grid using a second-order Godunov scheme. It is seen that the present
agrees well with experimental data, and the accuracy is similar to the second-order God
scheme.

6. CONCLUDING REMARKS

This paper shows that the nonlinear limited smoothing step efficiently removes the o
lations generated by the Lax—Wendroff scheme in solving two-dimensional Euler equati
The approach has been invariably applied to simulate both unsteady and steady flow
weak- and strong-shocked flows. The approach has been coupled with a vectorized I
adaptive algorithm using quadrilateral cells, so that the efficiency is enhanced considel
further.

Compared with the popular upwinding schemes, two merits of the smoothing approac
worth mentioning. One is that the approach can be applied easily to solve other hyper
systems because no Riemann solverisinvolved, and also itis simpler and easier toimple
than the upwind schemes.

We finally remark thatthe approach still has a large scope for future work. First, the pre
convection step uses a one-dimensional approximation as done by the Riemann so
due to the limited information (two cells) which an interface can efficiently accesses or
unstructured grid. However, a second-order central difference scheme is actually ak
be truly multidimensional. This suggests that the flux through interface can be determ
without any one-dimensional approximation. A truly multidimensional solver should



176 SUN AND TAKAYAMA

a

RN
AN

HEEEEEEEEEEN
HEEEREEREERE
N O T T T
MERENREN RN

b

FIG.23. Sequential numerical isopycnics and adaptive grids of shock wave propagation in the circular refle
for Mg =1.5.
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FIG. 24. Comparison of density distributions along the centerline.

constructed for the unstructured grid by using more information, for instance, gradien

flow variables.

Second, unlike most upwind schemes which incorporate implicit artificial dissipation, t
present approach uses an explicit one. The explicit dissipation is relatively easily contro
for interested flow phenomena, such as slipstreams and vortices. This has been shou
be the case in the present work. It opens a promising way to switch off artificial viscos
in the boundary layer when solving the Navier—Stokes equations. The performance of
approach on the solution of the boundary layer will be investigated and compared with
popular upwind schemes in the near future.

APPENDIX

We will prove here that the sufficient and necessary condition of a monotonic seque
Uz, Up, ..., U, ..., Uy is that, forany i <n,
|Ui+1+ Ui-1 — 2u;|

<1,
€0 + |Uiy1 — Ui_1]

o =

whereey is an infinitely small positive number.
Proof. Letuji1/2=U41 — Ui anduj_1,2 =U; — Uj_1; the statement above is identical
to the sufficient and necessary condition that all members of sequence
U2, ..., Ui—1/2, Ui+1/2, ..., Un-1/2
have the same sign or are equal to 0, is that, for aay %k n,

[Uit1/2 — Ui—1/2]
€0 + |Uit1/2 + Ui—1/2]

di =

wheregg is an infinite small positive number.
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On the one hand, if they,1,» andu;j_1/», have the same sign or are equal to 0, then

[Uit1/2] — [Ui—1/2]]
€0+ |Uiy1/2] + [Ui—1j2|’

¢ =

SO

¢ <1//

On the other hand, givep < 1, we will show that nonzera;1/,, Uj_1/»> with different

signs is not true. Ifitis true,

[Ui 172 + [Ui—1/2]

i =

o+ ||Uit1/2] — [Ui—12l]”

SO

¢ > 1

which violates the given conditiofy < 1. Soui1/2, Ui 1,2 have the same sign or are equa

to

zero. A
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