
Journal of Computational Physics150,143–180 (1999)

Article ID jcph.1998.6167, available online at http://www.idealibrary.com on

Conservative Smoothing on an Adaptive
Quadrilateral Grid

M. Sun∗ and K. Takayama†
Shock Wave Research Center, Institute of Fluid Science, Tohoku University, Katahira 2-1-1,

Aoba, Sendai 980, Japan
E-mail:∗sun@ceres.ifs.tohoku.ac.jp and†takayama@ifs.tohoku.ac.jp

Received December 31, 1997; revised December 3, 1998

The Lax–Wendroff scheme can be freed of spurious oscillations by introducing
conservative smoothing. In this paper the approach is first tested in 1-D modeling
equations and then extended to multidimensional flows by the finite volume method.
The scheme is discretized by a space-splitting method on an adaptive quadrilat-
eral grid. The artificial viscosity coefficients in the conservative smoothing step are
specially designed to capture slipstreams and vortices. Algorithms are programmed
using a vectorizable data structure, under which not only the flow solver but also the
adaptation procedure is well vectorized. The good resolution and high efficiency of
the approach are demonstrated in calculating both unsteady and steady compressible
flows with either weak or strong shock waves.c© 1999 Academic Press

Key Words:central scheme; artificial dissipation; conservative smoothing; vector-
ization; adaptation; quadrilateral grid.

1. INTRODUCTION

Consider the convection equation

ut + cux = 0, (1)

wherec is a wave speed. Independent variables are timet and spatial coordinatex. Among
finite difference schemes for (1), the second-order Lax–Wendroff scheme is one of the most
important, due to its uniqueness for linear equations and its essential role as the guideline
for many schemes. A well-known deficiency of the scheme is that it may produce spurious
oscillations around discontinuities.

In order to remove the unavoidable oscillations, artificial dissipation [21] is often added,
but the amount of dissipation necessary is not clearly known. Artificial dissipation terms are
usually designed to be second order or less in order to maintain the accuracy of the original

143

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press

All rights of reproduction in any form reserved.

144 SUN AND TAKAYAMA

scheme. However, an exact solution of Navier–Stokes equations shows that the thickness
of a shock wave changes linearly with the physical viscosity coefficient (see for example
[15, p. 266]). If we try to numerically imitate the physical dissipation by an artificial one
and attempt to produce a shock wave in a few cells, the artificial viscosity coefficient should
also be a linear function of the cell size, or the coefficient should be first order. Adding a
first-order term to (1), it becomes

ut + cux = 1x2

1t
(εux)x, (2)

whereε is a dimensionless artificial viscosity coefficient. Equation (2) can be split into the
convection step

ũt + cũx = 0 (3)

and thesmoothing step

ut = 1x2

1t
(εũx)x. (4)

The second-order Lax–Wendroff scheme is employed to solve the convection step. The
computational sequence of the two steps is trivial because the difference is only at the first
time step. In the smoothing step, we propose a viscosity coefficient

ε =
{

0, if φ < ε1;
ε2, if φ ≥ ε1,

(5)

where

φ =
∣∣∣∣1/2ũ′′1x2

ũ′1x

∣∣∣∣ (6)

andε1= 0.7, ε2= 1/4. This nonlinear coefficient does not deteriorate the order of the Lax–
Wendroff scheme. The valueε1= 0.7 was optimized by numerical experiments. Another
valueε2= 1/4 may dissipate spurious oscillations with the shortest wavelength most effi-
ciently. The indicatorφ is a measure of the degree of flow variations. Further discussions
on these parameters will be presented in Section 2.

The first successful example of a central scheme with nonlinear dissipation, to our knowl-
edge, is that of Boris and Book’s antidiffusion method or flux-corrected-transport (FCT)
method [3]. The approach can be interpreted as having two stages:

1. adding artificial viscosity everywhere during solving of the convection equation;
2. recovering the lost accuracy in the first stage by applying negative diffusion every-

where except near extrema where oscillations might occur.

Note that the net diffusion is coupled in solving the convection equation. If we sum these
two stages and rearrange the dissipation order, a simpler logic is:

1. compute the convection equation without any additional artificial viscosity;
2. add artificial viscosity in the position where oscillations might occur.

These are just the convection step and the smoothing step. It is seen that the smoothing
method is simpler and hopefully more efficient in removing oscillations since the dissi-
pation is added after solving the convection equation. A one-step scheme which can be
proven to be TVD for the scalar convection equation will be presented in a separate paper.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 145

Actually, the efficiency of the smoothing step in removing oscillations has been recognized
for many years. It was applied to suppress the instability in solving the K-dV equation [1].
Engquistet al. [5] devised a few nonlinear filtering algorithms in conjunction with numeri-
cal schemes. Shyyet al.[16] further showed that these filters could be a remedy to eliminate
the oscillations in a few model problems. They also numerically demonstrated the effects
of a filter on waves with different wavelengths. Their observations will be explained by the
spectral analysis in Section 2 (Fig. 2b). However, a similar filter which they used had been
generally tested in solving Euler equations about a decade before by Russian colleagues
([9], and references therein cited). They tried to correct the nonmonotonic property of the
MacCormack scheme. A recent numerical example can be found in [6]. However, this result
still suffers from “quivering” contours and excessive smoothness across a slipstream. Up
to now all authors only tested the smoothing methods on structured grids.

In the present work, the proposed smoothing method is first tested on 1-D model problems
and then extended to adaptive unstructured quadrilaterals by the finite volume method. The
robustness of the approach is validated by calculating a variety of gas dynamic problems.
This paper is organized as follows. Section 2 describes the performance of the smoothing
method in solving the linear wave equation and the 1-D Euler equations. Section 3 puts
forward a vectorized locally adaptive method which will be combined with the flow solver.
Section 4 is devoted to the smoothing step and the convection step on unstructured quadri-
laterals. The vectorization of the approach is also discussed. Section 5 gives numerical
examples for unsteady and steady flow calculations. Section 6 summarizes the paper and
remarks on what can be improved in future.

2. MODEL PROBLEMS

2.1. The Scalar Wave Equation

For the convection step (3), the Lax–Wendroff scheme reads

ũn+1
i = un

i −
σ

2

(
un

i+1− un
i−1

)+ σ 2

2

(
un

i+1− 2un
i + un

i−1

)
, (7)

whereσ = c1t
1x is the CFL number. The smoothing step (4) is conservatively discretized by

the central difference

un+1
i = ũn+1

i + εi+1/2
(
ũn+1

i+1 − ũn+1
i

)− εi−1/2
(
ũn+1

i − ũn+1
i−1

)
(8)

andεi+1/2=Max(εi , εi+1). Note that for constantε= ε2, (8) becomes

un+1
i = ũn+1

i + ε2
(
ũn+1

i+1 − 2ũn+1
i + ũn+1

i−1

)
. (9)

Sinceε2 is independent of1x and1t , (9) is simply to smooth the solution of (7). It is clear
that forε2= 0 the smoothing step has no influence on the solution of the convection step,
so it does not change the accuracy; but forε2 6= 0 it smoothes the solution and decreases the
accuracy to first order. Numerically (6) is discretized, by a central difference for a uniform
grid, to give

φ = |ui+1+ ui−1− 2ui |
ε0+ |ui+1− ui−1| , (10)

whereε0 is a small value to prevent a zero denominator for constantu regions.

146 SUN AND TAKAYAMA

FIG. 1. Five representative stages ofφ.

The ratioφ in (10) plays an essential role in limiting the artificial viscosity in (5).
Understanding its significance is helpful in choosing the parameterε1. Figure 1 shows five
representative stages ofφ. For any linear function,φ is always equal to 0; for a monotonic
function,φ is not larger than 1; for the critical case of a monotonic function with sharp
changes,φ= 1; if there is an extremum in a function,φ at the extremum is greater than 1;
for the worst case of an oscillation with wavelength 21x, the ratioφ approaches infinity.
Therefore, the ratioφ is a quantitativeindicator of whether the function is smooth or
oscillating as well as providing some information about the properties of the smooth and/or
oscillating regions. The critical valueφ= 1 corresponds to shock discontinuities. As it is
generally known that sufficient artificial viscosity is needed near a shock discontinuity, one
can conclude thatε1 should be close to 1. It can be easily proven by an algebraic method
that a sufficient and necessary condition of a monotonic sequence is thatφ <1 (see the
Appendix). Note thatφ= 1 orφ=∞ is independent of the jump of a discontinuity or an
oscillation. It is an asset to be able to compute discontinuities with different strengths and
to remove various oscillations using the same indicator.

The stability limitation is solved by the von Neumann method. Considering a single
harmonic wave applied to (9), one gets the amplification factor of the smoothing step,Gs,
by inserting

ũn+1 = eikx (11)

into (9), forφ >ε1,

Gs = un+1
i

ũn+1
i

= 1− 2ε2+ 2ε2 cos(k1x). (12)

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 147

The stability condition is

0< ε2 < 1/2. (13)

We are especially interested in the high-frequency wave withk1x=π , or wavelength 21x.
Its amplification factor is

Gs = 1− 4ε2. (14)

Note that an oscillation cannot be further damped forε2> 1/4, but changes the sign and may
generate a new extremum. A more suitable limitation of the smoothing step is 0<ε2≤ 1/4.
The most efficient dissipation for the shortest wave, corresponding toGs= 0, is when

ε2 = 1/4. (15)

Using this value, a harmonic wave with wavelength 21x is dissipated in one smoothing
step. It will be invariably applied to solve one-dimensional Euler equations.

We now consider the effect ofε1 on the harmonic wave. Substituting (11) into (10), one
may obtain

φ = |cos(k1x)− 1|
|sin(k1x)i | ≈ tan(k1x/2), (16)

where the phase shift in the denominator has been neglected.1 Then the amplification factor
of the smoothing step becomes

Gs =
{

1, if tan(k1x/2) < ε1;
1− 2ε2+ 2ε2 cos(k1x), if tan(k1x/2) ≥ ε1.

(17)

The amplification factor of the Lax–Wendroff scheme is (see, for example, [10])

|GLW| = |1− σ 2+ σ 2 cos(k1x)− iσ sin(k1x)|, (18)

which is shown in Fig. 2a. The present scheme combines the Lax–Wendroff scheme and
the smoothing step, so the amplification factor is|GsGLW|, which is shown in Fig. 2b for
ε1= 0.7 andε2= 1/4. It is seen that for long waves the factor is close to 1, and for short
waves it jumps to a much smaller value, then decreases to zero for the wavelengthλ= 21x.
The spectral meaning of the two parametersε1 andε2 is clear:ε1 defines the jump position
k1x= 2 tan−1(ε1), while ε2 gives the minimum amplification factor 1− 4ε2. Forε1= 0.7
andε2= 1/4, all oscillations withλ ≤ 51x are efficiently dampened. This is not so for the
Lax–Wendroff scheme.

1 As pointed out by a reviewer, neglecting the phase shift here gives the wrong norm for stability analysis, but
gives some rough guide.

148 SUN AND TAKAYAMA

FIG. 2. Amplification factors: (a) the Lax–Wendroff scheme; (b) the Lax–Wendroff scheme with the smooth-
ing step,ε1= 0.7, ε2= 1/4.

The effects ofε1 andε2 are further tested by numerical experiments. The results of the
propagation of a step wave running at differentε1 are shown in Fig. 3a forσ = 0.95. It is
seen thatε1= 0.7 is small enough to obtain a virtually monotonic solution. The effect of
the artificial viscosity coefficientε2 is investigated by settingε1= 0.8 while changingε2.
Figure 3b shows the results.ε2= 0 corresponds to the Lax–Wendroff scheme, plotted by
crosses. For allε2> 0, the amplitudes of the spurious oscillations are attenuated. Note that
only for ε2= 1/4 is the numerical solution monotonic behind the sharp discontinuity, while
the smoothing does not introduce much dissipation in front of it. Therefore, the following
results appearing in this paper are run atε1= 0.7 andε2= 1/4.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 149

FIG. 3. Effects ofε1 andε2 on step wave convection,σ = 0.95: (a)ε1= 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 forc2= 1/4;
(b) ε2= 1/2, 1/4, 1/8, 1/16, 0 forε1= 0.8.

2.2. The Euler Equation

We now consider one-dimensional Euler equations, which in their complete 1-D form
are

Ut + Fx = 0
(19)

U =
 ρ

ρu
ρe

 , F =
 ρu
ρuu+ p
ρeu+ pu

 ,
whereρ, u, andp are density, velocity, and pressure, respectively. The specific total energy

150 SUN AND TAKAYAMA

e satisfies, for an ideal gas,

e= 1

γ − 1

p

ρ
+ 1/2u2. (20)

We solve the equations in two steps, convection step and smoothing step. The convection
step is discretized in a conventional way. To avoid the estimation of the Jacobians, a two-step
Lax–Wendroff scheme, known as the Richtmyer scheme, is chosen. In the linear case the
two-step scheme becomes identical to a single-step Lax–Wendroff scheme. The smoothing
step is the same as that in the scalar case. The full scheme is

Un+1/2
i+1/2 = 1/2

(
Un

i +Un
i+1

)− 1t

21x

(
Fn

i+1− Fn
i

)
(21)

Ũ n+1
i = Un

i −
1t

1x

(
Fn+1/2

i+1/2 − Fn+1/2
i−1/2

)
(22)

Un+1
i = Ũ n+1

i + εi+1/2
(
Ũ n+1

i+1 − Ũ n+1
i

)− εi−1/2
(
Ũ n+1

i − Ũ n+1
i−1

)
(23)

εi+1/2 = max(εi , εi+1), εi = ε2(1+ sign(φ − ε1))/2

φ = |ρ̃ i+1+ ρ̃ i−1− 2ρ̃ i |
ε0ρ̃ i + |ρ̃ i+1− ρ̃ i−1|

, ε1= 0.7, ε2 = 1/4.

One can recognize (21) and (22) as being identical to the Richtmyer scheme. Compared
with the scalar case, the density ˜ρ is chosen as a key variable to indicate the regions with
high gradients in the smoothing step (23). Since the density is always positive, the small
valueε0 is replaced withε0ρ̃ i to make the indicator dimensionless, andε0= 10−4 during
computations. To limit artificial viscosity, another generally used key variable is pressure,
which, however, fails to detect a contact surface. During our early computations, both key
variables were used. We found no clear differences when using just the density. The viscosity
coefficientεi is written in a more concise form as in the relation (5).ε1 andε2 are simply
taken as constants. Since the parameters are unchanged, the scheme has no free parameter
in this sense.

The Sod shock tube problem [17] is solved by the scheme forγ = 1.4. The left-side and
right-side values are given as

(ρ, u, p)L = (1, 0, 1),
(ρ, u, p)R = (0.1, 0, 0.125).

The condition is an ordinary shock tube problem which has been tested by many authors.
The initial diaphragm is atx= 0.5, and 101 nodes are used. The solution contains a shock
wave, a contact surface, and expansion waves. The numerical results are shown in Fig. 4.
There are no significant oscillations associated with any discontinuities. Similar results are
also obtained for other shock tube problems which will not be shown here. Concerning the
computational efficiency, the scheme costs about 25% more CPU time than the original
Lax–Wendroff scheme in the 1-D tests.

3. THE VECTORIZED LOCALLY ADAPTIVE ALGORITHM

In recent years, unstructured meshes have been widely used in computational fluid
dynamics [20]. In order to have more accurate numerical solutions, various grid adapta-
tion methods have been successfully applied to solve problems with multiscale physical

FIG. 4. 1-D shock tube problem: (a) pressure; (b) density; (c) velocity.

151

152 SUN AND TAKAYAMA

FIG. 5. Cell-edge data structure: (a) cell information—a cell points to four edges; (b) edge information—an
edge points to two neighboring cells.

phenomena, such as shock waves. In most shock-capturing calculations, a locally refined
grid may contain nodes which are orders of magnitude less than those of a uniform grid
achieving the same accuracy. These adaptive methods have reached a level of maturity [13].
However, adaptation methods were usually organized for scalar execution, and the area of
vector-adaptive algorithms is relatively unexplored [11]. To be able to vectorize the pro-
cedure, we put forward a locally adaptive method for quadrilateral cells in this section. A
data structure is designed to vectorize the adaptation procedure as well as the flow solver.
So, we start from a description of the data structure.

A fundamental nature of the data structure is that every cell points to its four edges, and
every edge points to its two neighboring cells. The basic information saved for a cell is
its location and the indices of four edges. The four edges are uniquely ordered. In Fig. 5a,
edges BC, CD, DA, AB are neighboring edges NE1, NE2, NE3, NE4, respectively. Every
edge is defined as a directional segment, as shown in Fig. 5b. The direction assures that the
left of NE1, NE4 and the right of NE2, NE3 are the cell itself, while the right of NE1, NE4
and the left of NE2, NE3 correspond to the right, below, above, and left neighboring cells,
respectively.

The basic information saved for an edge is the locations of its two ends and the indices of
its left and right cells. Note that a cell never directly points to another cell but rather through
their common edge. For instance, if celli needs the information from its right cellj , then
it should get the right index of its NE1, as shown in Fig. 5b. It is clear that one adjacent
connectivity only needs two memory reads during computation.

Basic cell-edge addressing is well known (see, for example, [14]). The novel feature of
the present addressing is the definition of edge direction and edge order for a cell, which is
described above. This strict definition reduces conditional statements in the code, especially
in adaptation, and thus enhances the efficiency. Note that the definition requires no additional
memory, but stores the necessary information in the definite order. Another advantage of the
data structure is its convenience in vectorization. It is generally known that data dependency
prevents vectorization. Since a cell does not refer to another cell except through an edge, any
operation on a cell is independent of other cells. This property simplifies the vectorization
not only in solving conservation laws but also in refining and coarsening grids.

We first describe the adaptation procedure. The criterion for adaptation is based on the
Taylor series expansion of density. The criterion is

Refine= Max[φi , φ j] > εr

Coarse= Max[φi , φ j] < εc,

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 153

FIG. 6. Cell-adjacent information.

whereRefineandCoarseare logical flags which indicate whether a cell needs to be refined
or coarsened.εr and εc are threshold values for refinement and coarsening. Two error
indicators,φi andφ j , are given by the ratio of the second-order derivative term to the
first-order one in the Taylor expansion, so that

φi =
|ρ̃ i+1, j + ρ̃ i−1, j − 2ρ̃ i, j |
αρ̃ i, j + |ρ̃ i+1, j − ρ̃ i−1, j |

, φ j =
|ρ̃ i, j+1+ ρ̃ i, j−1− 2ρ̃ i, j |
αρ̃ i, j + |ρ̃ i, j+1− ρ̃ i, j−1|

. (24)

The locations of density appearing in (24) are shown in Fig. 6a. The tilde (˜) denotes that
the density is a newly updated one in solving the conservative laws which will be discussed
in the next section. Two subscripts in (24) represent the locations opposite cell(i, j) in
two directions. It does not imply that a two-dimensional array is used to save data, since
neighboring connectivity is obtained from the cell-edge data structure. Equation (24) is the
exact ratio of the second-order term to the first-order one on a uniform grid. Because the
ratio indicates an approximate solution error and its exact value is unnecessary, it is directly
extended to arbitrary quadrilateral grid.

There are three parameters in the criterion.α is initially designed to prevent a zero
denominator, and it can also filter extremely small flow variations. For example, if the
amplitude of the variations in some regions is much less thanαρ̃ i, j , then the error indicators
are also small. Consequently cells will not be refined there. Three parameters are nearly
independent of flow conditions to achieve the most economical adaptation. We choose
εr = 0.06,εc= 0.05, andα= 0.03 for all computations in this paper.

The refinement and coarsening procedures are handled separately. Both procedures have
similar steps for vectorization:

1. handling the inside of cells which are flagged to be refined or coarsened;
2. handling the edges of the flagged cells;
3. arranging memory.

Step 1 is based on cells and updates all inside information, such as deleting inside edges and
adding finer cells; these are done without changing the status of other outside cells. Step 2,
based on edges, renews every edge of refined or coarsened cells and its two neighboring
cells, which may be done without influencing other edges. Following this strategy, one may
naturally remove the data dependency which often prevents vectorization in adaptation.

A cell to be refined must be divided into four subcells orsons, as shown in Fig. 7. If
an edge is split into two subedges, we call the edge amotherand the subedgesdaughters.

154 SUN AND TAKAYAMA

FIG. 7. Refinement strategy: father cell ABCD is divided into four sons, EBFO, OFCG, HOGD, and AEOH.

There are some options in the division. One is that the node inside can be optimized to
get good shapes of the sons. In the present adaptation the node is set to the centroid of the
father cell. Another option is the locations of new nodes on the outside edges, usually at the
centers. However, if an edge is a boundary, AB, for instance, we choose a new location E
to make edge OE perpendicular to the boundary if this choice does not generate extremely
skewed cells. Only when all four sons are flaggedcoarseare they deleted and recovered to
their father cell.

In the refinement procedure, it is required that no two neighboring cells differ by more
than one refinement level. This rule prevents pathologically large volume ratios under certain
circumstances. An illustration of this rule is shown in Fig. 8. If cell ABCD is one of the
coarsest cells, its level is set to 0. The refinement level of a son equals that of his father
plus 1. In Fig. 8, the level of cells 1, 2, 3, and 4 is 1; the level of cells 5, 6, 7, and 8 is 2,
and so on. The difference between levels of two neighboring cells may not be more than 1.
Refining cell 5 is then not allowed. The rule of one-level difference has also been used by
other authors (see, for example, [22]).

In unsteady calculations, the rule that two neighboring cells differ by no more than one
level may mismatch moving refined regions, say shock wave regions. An illustration is given
in Fig. 9. The refinement levels of cells in columnsa andb are 3; those in columnsc andd

FIG. 8. The levels of refinement: refining cell 5 is not allowed.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 155

FIG. 9. Prerefinement. Cells in columnc cannot be refined to capture the coming shock wave, because the
level of refinement in columnd is lower. The cells in columnd have to be prerefined.

are 2 and 1, respectively. A shock wave moving from left to right lies in the finest cells. The
shock wave will arrive at columnc in two time steps by using a high CFL number; then the
cells in columnc should be refined to be able to capture the shock wave. Since a shock wave
can be resolved within two cells by a high-resolution scheme, cells in columnd are not
able to detect that the shock is coming based only on the information from its closest
neighboring cells. The adaptation criterion then labels the cells in columnd, refine= .false.,
and thus columnccannot be refined because of the rule. Consequently the shock wave moves
into the region with coarser cells and is smeared dramatically. This indeed happened in our
early unsteady calculations. To combat this problem,prerefinementis introduced. Once a
cell cannot be refined due to the level difference between itself and its neighboring cells,
the neighboring cells should be prerefined. In the case shown in Fig. 9, the cells in column
d are prerefined, no matter what they are labeled.

Steps 1 and 2 change the status of some cells and edges, for example from sons to fathers.
Step 3 just cleans and arranges the memory, and divides all cells and all edges into two
groups, father/non-father and mother/non-mother, according to their updated status. The
non-mother edges are further divided into boundary/non-boundary edges. These classifi-
cations generate an efficient data structure for a flow solver. Figure 10 illustrates memory

FIG. 10. Memory organization.

156 SUN AND TAKAYAMA

FIG. 11. The efficiency of vector processing of refinement and coarsening procedure.

strides of the edge list and the cell list after the adaptation procedure. All cell indices are
saved in the cell list, while edge indices in the edge list. Both of them are constant strides,
which is required for vectorization. The lists are very efficient especially for a flow solver us-
ing the finite volume method, because non-fathers are just non-overlapping physical control
volumes and non-mothers are the interfaces on which flux evaluations are conducted.

The adaptation subroutine includes 34 loops and about 1,400 FORTRAN lines. All loops
are vectorized. Its practical efficiency for vector processing is tested by refining one cell
from level 0 to level 6 (4096 cells), and then coarsening the refined cells from level 6 to
level 0. Figure 11 shows the average CPU time normalized by 10,000 cells. No flow solver is
computed in this test. The CPU time is decreased with increasing total cell numbers. When
the total cells are over 1,000, the speedup is about 30. This indicates that the adaptation
procedure is well vectorized.

4. THE FLOW SOLVER

In the flow solver, we combine the smoothing step and the space- or operator-splitting
convection step as

Un+2 = Lx L ySLyLx SUn,

where S represents the smoothing step.Lx L y and L yLx represent the convection step.
Two steps will be explained in Sections 4.1 and 4.2, respectively. The use of this Strang-
type splitting on the quad-tree grid can be found in [4]. Note that each time step conducts
the smoothing once, which is more computationally efficient than smoothing twice in two
directions. If the adaptation is used, it is always conducted before the smoothing step. The
vector processing of the flow solver under the cell-edge data structure will be discussed in
Section 4.3.

4.1. The Conservative Smoothing Step

The conservative smoothing is required to dampen oscillations generated in solving Euler
equations by the Lax–Wendroff scheme. In this subsection, we will describe how to realize

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 157

this smoothing on an unstructured quadrilateral grid. In the smoothing step, we add artificial
dissipation by solving

Ut = (1l)2

1t
∇ · (ε∗ · ∇Ũ),

whereU represent the conservative variables, and1l is a local grid size.ε∗ is a diagonal
tensor of artificial viscosity. Following the finite volume approach, one gets

Ui = Ũ i + 1

Vol

∑
εi j (Ũ j − Ũ i)l j l i j lij · nj , (25)

wherel j , l i j are the length of an interface and the distance between two neighboring cells of
the interface,nj andlij are their unit vectors, respectively. A sketch of the geometry variables
is shown in Fig. 12a. Vol is the volume of celli , and

∑
sums the fluxes through four faces.

The local grid size1l has been taken asl i j in (25). The performance of a smoothing step
just depends on the control of artificial viscosityεi j at the interface.

FIG. 12. Geometrical definition of an interface.

158 SUN AND TAKAYAMA

We first consider some requirements on a smoothing step in multidimensional flows.
There are five basic physical phenomena in compressible flows: shock wave, expansion
waves, contact surfaces, slipstreams, and vortices.2 The first three exist in one-dimensional
and multidimensional flows. They are locally close to be one-dimensional in multidimen-
sional flows. The smoothing step needs only to dissipate them along their propagation
direction, so that the most effective dissipationε2= 1/4 can be applied. However, the last
two are truly multidimensional phenomena. Although both slipstream and contact surface
are discontinuous in numerical simulations, contact surfaces will possibly generate spurious
oscillations, but a slipstream usually does not because of its relatively low normal speed and
thus low fluxes. In other words, a contact surface needs artificial viscosity, but a slipstream
does not. Furthermore, a solid boundary is similar to a slipstream, where the normal speed
is zero but the tangential speed is arbitrarily large. Low artificial dissipation at boundary is
critical for the calculation of the boundary layer. Another multidimensional phenomenon
is related to a vortex. The core of a vortex has a physical minimum value of density and
pressure. Conservative smoothing should be able to distinguish a vortex core from these
unwanted extrema.

In brief, acceptable conservative smoothing should add sufficient dissipation around
spurious oscillating regions in primary wave propagation direction, while it should not
influence other smooth regions, vortices, and slipstreams. The present smoothing consists
of two steps: first detecting oscillations and sharp gradients; then computing artificial viscous
fluxes.

In detecting oscillations, we design indicators

TX = Min[φi (ρ̃), φi (ρ̃e),Max(φi (ũ), φi (ṽ))],
(26)

TY = Min[φ j (ρ̃), φ j (ρ̃e),Max(φ j (ũ), φ j (ṽ))],

where the functionsφi (ϕ) andφ j (ϕ) are defined as

φi (ϕ) = |ϕi+1, j + ϕi−1, j − 2ϕi, j |
ε0ρ̃ i, j + |ϕi+1, j − ϕi−1, j | , φ j (ϕ) = |ϕi, j+1+ ϕi, j−1− 2ϕi, j |

ε0ρ̃ i, j + |ϕi, j+1− ϕi, j−1| , (27)

with ε0= 10−4. TX andTY are indicators in two directions, as shown in Fig. 6b.
Compared with the density indicator in the 1-D smoothing step (23), the speeds in two

directions are added in (26) to distinguish a vortex from a spurious oscillation. This is based
on the understanding that the velocity in a vortex is usually free of extrema although the core
of it has a minimum of density. We suppose that these additional limitations have negligible
influence on detecting spurious oscillations, or spurious oscillations are the simultaneous
variation of velocity, density, and energy. If we use only the density in the indicator, as done
in the 1-D calculations, the smoothing step can input excessive dissipation to a vortex and
produce a “hollow” vortex core, as shown in Fig. 13a. This is verified by the indicator (26),
as shown in Fig. 13b, where the spiral shape of the slipstream and the vortex core are clearly
captured.

2 Slipstream and contact surface satisfy the same compatible conditions; that is, across them both pressure and
the normal velocity are continuous. We distinguish them qualitatively by the difference of tangential speed across
them. If the difference is small, it is a contact surface; if the difference is large, it is a slipstream. In experiment a
slipstream is usually much thicker than a contact surface because of strong viscosity.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 159

FIG. 13. Comparison between two indicators: shock diffraction over a 90◦ corner,Ms= 1.5. (a) 1-D density
indicator: a hollow vortex; (b) indicator (26).

160 SUN AND TAKAYAMA

In order to add the dissipation only in oscillation directions, we define a vector artificial
coefficient

εi = ψ(ε2, 0, TX ≥ ε1)nX + ψ(ε2, 0, TY ≥ ε1)nY, (28)

whereψ is defined as

ψ(x, y, z) =
{

x, if z= .true.
y, if z= . false.

(29)

SymbolsnX andnY are unit vectors, whose directions are shown in Fig. 6b. The criterion
(5) has been applied in (28) along two directions. In this way, the dissipation will be added
only in oscillation directions. Functionψ in (29) is a vectorizable intrinsic function.

After oscillations and their directions are detected for all cells, the viscous coefficient at
interface is given by

εi j = Wt (|εi · nj | + |εj · nj |)/2, (30)

whereWt is a weight function. The weight is defined according to a local wave direction,

Wt = (dvij · nj)
2+ ε0/2

dvij · dvij + ε0
, (31)

wheredvij is velocity difference between celli and j which is approximately the direction
of wave propagation. The component alongnj of the velocity difference is estimated as the
weight.

We note that ifnj is just the direction of wave propagation, thenWt = 1(ε0 is negligibly
small). It is clear that the artificial dissipation is the same as that in solving 1-D Euler
equations in the direction of wave propagation. Therefore one may expect that for the
locally one-dimensional phenomena spurious oscillations are able to be dampened, as done
in one-dimensional flows shown in Section 2. On the other hand, the weight (31) also shows
that artificial dissipation across a slipstream is very small, because the change of normal
velocity (dvij · nj)

2 is much less than the total changedvij · dvij there. In the algorithm
Wt =Max[1/8,Wt] is adopted. The coefficientεi j at any boundary is always set to be
zero.

4.2. The Convection Step

In solving 2-D Euler equations on a structured grid, the two-step Lax–Wendroff scheme
designed by Zwas (see [10, p. 259]) consists of three nodes in each dimension, which is a
stencil closest to the domain of physical wave propagation. However the scheme requires
both cell-centered and cell-vertex addressings. It is very difficult for an unstructured data
structure especially with grid adaptation to efficiently provide two addressings together. In
the present paper the space-splitting method is chosen to avoid the cell-vertex addressing,
while the computational stencil used is still three in each dimension.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 161

FIG. 14. Splitting of velocity at interface.

Two-dimensional conservation laws are

∂

∂t

∫
Vol

UdV +
∫
Ä

F(unx + vny) dl +
∫
Ä

(Pxnx + Pyny) dl = 0, (32)

where

U =


ρ

ρu
ρv

ρe

 , F =


ρ

ρu
ρv

ρe+ p

 , Px =


0
p
0
0

 , Py =


0
0
p
0

 .

We write the Euler equations in this form for its convenience in describing the splitting
method. Letvn andvt denote the normal and the tangential velocity ofv= (u, v)on interface
Ä as shown in Fig. 14a. Then one may rewrite the second term in (32), as

unx + vny = v · n = (vn + vt) · n = vn · n = unnx + vnny, (33)

then

∂

∂t

∫
Vol

UdV +
∫
Ä

F(unnx + vnny) dl +
∫
Ä

(Pxnx + Pyny) dl = 0;
(34)

∂

∂t

∫
Vol

UdV +
∫
Ä

(Fun + Px) dx+
∫
Ä

(Fvn + Py) dy = 0,

whereun, vn are two components ofvn in the Cartesian coordinates. Equation (34) is just
the conservative equations used for splitting. We split it into two equations

∂

∂t

∫
Vol

UdV +
∫
Ä

(Fun + Px) dx = 0 (35)

and

∂

∂t

∫
Vol

UdV +
∫
Ä

(Fvn + Py) dy= 0. (36)

162 SUN AND TAKAYAMA

Transformation (33) is required to avoid spurious fluxes through a solid boundary which is
not parallel to the coordinates as shown in Fig. 14b. Flows always move along the boundary,
and the velocity normal to the boundary is zero. However, after one splits the velocity
directly according to the coordinates, bothu andv have non-zero components normal to
the boundary, although the sum of them equals zero. Then, in solving the split equation, the
non-zero component introduces fluxes through the boundary, which is physically incorrect.
After the transformation, the splitting is based on the normal velocity which is zero at
boundary, so the spurious fluxes disappear.

Equation (35) is discretized at half time step,

Un+1 = Un − 1t

Vol

∑(
Fn+1/2un+1/2

n + Pn+1/2
x

)
1xj . (37)

The values at the half time step are predicted by locally computing the Lax–Friedrichs
scheme between two neighboring cells. The state at the interface centerC is taken as the
distance-weighted one from two cells,

UC = l R

l R+ l L
Ui + l L

l R+ l L
U j , (38)

wherel R andl L are distances from cells to the edge centerC, as shown in Fig. 12b. The Lax–
Friedrichs scheme is then solved along directionlij by assuming the flow is approximately
one dimensional there,

ρ
n+1/2
C = ρC +1τ[(ρul)

L − (ρul)
R
]

(ρul)
n+1/2
C = (ρul)C +1τ

[
(ρul)

LuL
l + pL − (ρul)

RuR
l − pR

]
(39)

(ρun)
n+1/2
C = (ρun)C +1τ

[
(ρun)

LuL
l − (ρun)

RuR
l

]
(ρe)n+1/2

C = (ρe)C +1τ
[
(ρe)LuL

l + PLuL
l − (ρe)RuR

l + pRuR
l

]
,

where superscript lettersL and R denote the states at celli and j , respectively.ul andun

are components of velocity in directionslij andnij , as shown in Fig. 12a, for instance

(ρul)
L = (ρv)i · lij

(ρun)
L = (ρv)i · nij ,

(40)

and so on. The predicator step should choose1τ = (1/2)1t/ l i j . We modify1τ as follows,

1τ = 1t/ l i j


1/2, Ti j ≤ 1/2

Ti j , 1/2< Ti j ≤ 3/4,

3/4, 3/4≤ Ti j

(41)

or in a concise form,

1τ = Max[1/2,Min(3/4, Ti j)]1t/ l i j ,

whereTi j is an indicator of flow variation, andTi j =Max(|Ti · nj |, |Tj · nj |) whereTi =
TXnX + TYnY . This modification generally introduces more dissipation around sharp dis-
continuities. The smoothing step combined with this modified Lax–Wendroff scheme works

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 163

FIG. 15. Computational stencil for the splitting method.

better. Since the modification keeps1τ = 1/21t in continuous regions, it does not change
the accuracy there. The fluxes through the interface are then given by using the predicted
values.

Equation (36) can also be discretized similarly. Let operatorsLx andL y represent solving
two equations; then in one time step we have eitherUn+1= L yLxUn or Un+1= Lx L yUn.

It is observed that the splitting method requires three nodes in each dimension on a
regular grid. This is explained in Fig. 15 by consideringL yLx splitting. StepLx collects the
information alongx-axis as shown in Fig. 15a. Then stepL y further collects all information
from y-direction. Thus the stencil is finally three in each dimension as the shadow region
shown in Fig. 15b.

Special treatments are needed to keep second order accuracy in space for interfaces
between cells with different refined levels.Pseudo-cellsare created for cells with a lower
refined level, as shown in Fig. 16. Cells A and C have different refined levels. The coarser
one, cell A, should generate some pseudo-cells, saya andb. Pseudo-cellsa andb will
have the same level as cell C. The conservative values of pseudo-cells are interpolated
from their neighboring cells. For example these of pseudo-cella are interpolated from cells
A, B, and C. All fluxes are evaluated between same level cells. The flux between cells
A and C is computed by cell C and pseudo-cella, but the flux between cells A and B is
still computed by these two cells. Without these pseudo-cells some tiny fluctuations would
appear on contours. Illustrations are given in Fig. 13, which are early computations without
pseudo-cells.

FIG. 16. Illustration of pseudo-cells.

164 SUN AND TAKAYAMA

4.3. Flow Solver under the Cell-Edge Data Structure

The flow solver can be efficiently constructed and easily vectorized under the cell-edge
data structure. This is done following a routine which consists of four basic steps:

1. computing fluxes through non-mother non-boundary edges;
2. computing fluxes through non-mother boundary edges;
3. computing fluxes through mother edges by adding their daughters’ fluxes;
4. computing the sum of four fluxes for every cell.

The computation of fluxes through an edge requires only its two neighboring cells whose
indices are explicitly saved for every edge, so that the flux evaluation is easily vectorized.
Similar efficiency is also achieved for other steps by the cell-edge data structure.

It is clear that adjacent connectivity information can be directly obtained from the cell-
edge data structure. However, to get the same information, the well-known quad-tree and
octree structure often need to climb up to the root of the branch and then climb down to
neighboring cells, which is difficult, if not impossible, to vectorize. The climbing process
is avoided by using the present cell-edge data structure. Note that because of step 3, step 4
simply accumulates the fluxes of four edges irrespective of whether the edges are split or
not while preserving conservation.

The flow solver following the four steps has almost no conditional statements in determin-
ing connectivity information, which is usually very difficult for locally adaptive algorithms.
In fact, the only conditional statement is in step 2, where it deals with different types of
boundaries. Thus, the data structure is highly efficient for solving the conservation laws.

The global efficiency of all subroutines is measured by calculating a shock wave diffract-
ing over a 90◦ corner. The test runs 400 time steps and uses about 10,000 cells (cell number
cannot be fixed because of adaptation). The memory requirement for this computation is
nearly 2 megawords. The numerical results will be discussed in the following section.

Figure 17 shows the CPU time distribution on the main subroutines of the algorithm.
The flow solver takes 70% of the computational time. The remaining time is mainly spent

FIG. 17. CPU time distribution on major subroutines.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 165

on grid adaptation and geometry update. The geometry update only computes cell volumes
and edge lengths. It costs, of course, a very small portion of the total computation. The
flow solver takes 6 times as much CPU time as that required by the geometry update, and
the grid adaptation only takes 1.7 times. These results show that both the flow solver and
the grid adaptation are computationally fast. According to hardware statistics, the average
vector length is 117.6 (the maximum machine length is 128), and therefore the flow solver
and the adaptation are well vectorized.

The average CPU time requires about 4µs per cell per step. This speed is around two
orders faster than that conducted in a workstation using upwind schemes with either exact or
approximate Riemann solvers [8, 23]. The efficiency is not only due to the well-vectorized
data structure but also due to the Euler solver, which is a central-difference scheme with the
conservative smoothing. (Note: All computations are carried out on a Cray C90 in single
processor mode. The flow solver tested here does not include pseudo-cells which have been
discussed in Section 4.2. Pseudo-cells increase computer time up to 50% depending on the
number of pseudo-cells.)

5. NUMERICAL EXAMPLES

In this section a few unsteady and steady gas dynamic problems are solved by the scheme
presented in the previous sections. The ideal gas model and the ratio of specific heats
γ = 1.4 are used. The parameterε1= 0.7 and the artificial viscous coefficientε2= 1/4 are
constant in all computations. Other parameters, for instance, the thresholds for refinement
and coarsening shown in Section 3, are also kept constant. Although fine tuning of these
parameters can improve the resolution and efficiency a little, it will be demonstrated that
these unchanged parameters give acceptable results for a variety of unsteady and steady
problems.

5.1. Unsteady Shock Diffraction

Shock wave diffraction over a 90◦ corner is conducted in this subsection. The geometry
consists of three 1× 1 squares. Every square can be divided to many fine cells. A shock
wave is initially at 0.5 to the left of the corner point. The CFL number is 0.9, and it is
unchanged for unsteady computations. A discontinuity may pass one cell in one time step
at such a high CFL number, so that the adaptation is performed at every time step.

Figure 18 gives a weak shock diffraction at three different levels of refinement. The
density contours are virtually independent of the grid adaptation. Of course, shock waves
become linearly sharper for high-level adaptations. Because the postshock flow is subsonic,
expansion waves propagate upstream. The incident shock wave is gradually attenuated to
the downstream wall. These phenomena are resolved similarly on three different grids.

The recorded computer time further shows that the adaptation procedure is highly ef-
ficient. The finest cells are economically distributed around shocks and vortices. In this
example an additional level of refinement requires about 3.2 times as much CPU time, but
it is 8 times (4 times cells, and 2 times time steps) as much on a uniformly refined grid.
Although the adaptive unstructured algorithm runs a few times slower than a structured one,
a two-level refinement more than compensates for this factor.

The results of strong shock diffraction, forMs= 2, 4, 8, 16, are shown in Fig. 19. Real
gas effects are not considered here, because the main object of this paper is not to investigate

166 SUN AND TAKAYAMA

FIG. 18. Unsteady shock diffraction on adaptive grids with different levels of refinement, isopycnics and
grids: Ms= 1.3, CFL= 0.9. (a, b) level= 1, 4,683 cells, CPU= 2.0 s; (c, d) level= 2, 6,744 cells, CPU= 6.2 s;
(e, f) level= 3, 11,382 cells, CPU= 20.4 s.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 167

FIG. 18—Continued

168 SUN AND TAKAYAMA

FIG. 18—Continued

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 169

physical phenomena. Three-level refinement is adopted, and it is 256× 256× 3 cells if using
a uniform grid. The required CPU time is no more than 35 s in each case. We emphasize
here the two parametersε1= 0.7 andε2= 1/4 are kept constant in calculating these shock
waves. Combined with the results of weak shock diffraction shown in Fig. 18, it is clear
that the smoothing step efficiently cleans the oscillations behind shock waves with a wide
range of strengths.

For strong shock diffraction, flow patterns close to the corner are similar. There are
expansion waves, a slipstream and a secondary shock wave. These are well resolved for
all shock strengths. The vortex is not observable for very strong shocks. A clear difference
between different shocks lies in their reflection configurations on the downstream wall. The
foot of the Ms= 2 shock is almost perpendicular to the wall; theMs= 4 shock forms a
sharp turn there, but the waves behind it are somewhat continuous. The waves at the wall
for the Ms= 8 case can be recognized as a sharp discontinuity or a reflected shock wave,
and then they form a Mach reflection and a very short Mach stem is seen; for theMs= 16
shock the Mach stem is no longer visible and the configuration is a regular reflection. These
changes qualitatively agree with experimental observations [2].

5.2. Unsteady Shock Reflection

Another basic unsteady shock phenomenon is shock reflection. A benchmark test is set
for a shock wave withMs= 2 moving over a 46◦ wedge. A variety of numerical results
by different schemes and a few experimental photos are available in [19]. We repeat the
computation under the same condition. Figure 20 shows our numerical results on structured
and unstructured quadrilaterals.

The computation uses a 4-level refinement and its finest cells correspond to a 512× 512
grid which covers the whole computational domain for the structured grid. The CFL number
is 0.9, but the time step is somewhat limited by the smallest cells near the corner. Around
1000 time steps are required and the CPU time is less than 1 min.

The wave configuration consists of an incident shock, a Mach stem, a reflected shock,
and a slipstream. These are clearly seen in the results on both grids. The slipstream has been
captured as sharply as shock waves. Shock thickness is not constant in the figures because
the background cells are of different sizes, as shown in Fig. 20b. The resolution of shocks
is comparable with many other schemes [19], but the present computation requires much
less computer time.

5.3. Steady Channel Flows

Steady flows are computed in a channel with a compression corner, followed by an
expansion corner, which is similar to that in [23]. The length of computation domain is
4. Solutions are given att = 4. The upper and lower surfaces of the channel are reflecting
conditions, with a supersonic inflow on the left, and outflow on the right. The inflow Mach
numberM = 2. The CFL number can be chosen slightly higher than 1 in steady computation.
We compared the results computed at lower CFL numbers, and found no big differences
in pressure and density contours, but an increase in computer time. The grid adaptation is
performed every three time steps. When using a refined grid, we calculate fort ≤ 2 on a
coarse grid to get a good initial state, then start the adaptation procedure and compute up
to t = 4. Computing time is reduced by nearly half using this simple strategy.

170 SUN AND TAKAYAMA

FIG. 19. Unsteady shock diffraction for strong shock waves, isopycnics: CFL= 0.9, level= 3, 20,000–
24,000 cells, CPU= 30–35 s. (a)Ms= 2.0; (b) Ms= 4.0; (c) Ms= 8.0; (d) Ms= 16.0.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 171

FIG. 19—Continued

172 SUN AND TAKAYAMA

Figure 21 shows the results using three-level refinement. There is an attached shock at
the compression corner. The shock is reflecting from the upper surface and forms a Mach
reflection. The reflected shock interacts with the Prandtl–Meyer fan starting from the corner
and then reflects from the lower surface as well. There is a discontinuity in the isopycnics,
emanating from the triple point and nearly going parallel to the upper surface, as shown in
Fig. 21a. This discontinuity is interpreted as being a slipstream because the pressure across
it is continuous, as shown in Fig. 21b.

FIG. 20. Unsteady shock reflection over a 46◦ wedge for Ms= 2, isopycnics and grids: CFL= 0.9,
level= 4, 22,000–23,000 cells. (a, b) on a structured grid; (c, d) on an unstructured grid.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 173

FIG. 20—Continued

A shortcoming of the smoothing or filter in computing unsteady [6] and steady flows
[5] is the fluctuation of contours. The present approach has successfully overcome this. It
is seen that both density and pressure contours are sufficiently smooth in expansion wave
regions even on a grid with different sized cells.

5.4. Shock Motion in a Circular reflector

Previous results are either steady flows or unsteady but self-similar flows. This subsection
gives a truly unsteady result of shock wave moving in a circular reflector. The geometry

174 SUN AND TAKAYAMA

FIG. 21. Steady tunnel flow over a 15◦ bump on an adaptive grid:M = 2.0, CFL= 1.6, level= 3, 13,861 cells,
1,273 time steps, CPU= 61.7 s. (a) isopycnics; (b) isobars; (c) corresponding grid.

of the reflector and initial grid are shown in Fig. 22. Only half of the domain is computed
because of symmetry.

The results are shown in Fig. 23 for incident shock Mach numberMs= 1.5. The initially
planar shock wave enters and diffracts at the entrance, resulting in a curved shock wave, the
foot of which is perpendicular to the wall, as seen in Fig. 23a. The foot of this curved shock
wave tends to lean forward with its propagation and eventually becomes Mach reflection, as
seen in Fig. 23b. With further propagation of the shock wave, the Mach reflection transits to
a regular reflection. A fully developed regular reflection is shown in Fig. 23c. In Fig. 23d the
incident shock has been completely reflected. It is seen that the adaptive grids are efficiently
distributed around time-dependent sharp changing regions.

For quantitative comparison, the density distribution along the centerline is plotted in
Fig. 24 at an instant when experimental data are available [18]. The numerical data are
compared with those obtained by another adaptive flow solver [7], which is performed

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 175

FIG. 22. Physical geometry and unstructured quadrilateral grid.

on triangular grid using a second-order Godunov scheme. It is seen that the present result
agrees well with experimental data, and the accuracy is similar to the second-order Godunov
scheme.

6. CONCLUDING REMARKS

This paper shows that the nonlinear limited smoothing step efficiently removes the oscil-
lations generated by the Lax–Wendroff scheme in solving two-dimensional Euler equations.
The approach has been invariably applied to simulate both unsteady and steady flows, for
weak- and strong-shocked flows. The approach has been coupled with a vectorized locally
adaptive algorithm using quadrilateral cells, so that the efficiency is enhanced considerably
further.

Compared with the popular upwinding schemes, two merits of the smoothing approach are
worth mentioning. One is that the approach can be applied easily to solve other hyperbolic
systems because no Riemann solver is involved, and also it is simpler and easier to implement
than the upwind schemes.

We finally remark that the approach still has a large scope for future work. First, the present
convection step uses a one-dimensional approximation as done by the Riemann solvers,
due to the limited information (two cells) which an interface can efficiently accesses on an
unstructured grid. However, a second-order central difference scheme is actually able to
be truly multidimensional. This suggests that the flux through interface can be determined
without any one-dimensional approximation. A truly multidimensional solver should be

176 SUN AND TAKAYAMA

FIG. 23. Sequential numerical isopycnics and adaptive grids of shock wave propagation in the circular reflector
for Ms= 1.5.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 177

FIG. 23—Continued

178 SUN AND TAKAYAMA

FIG. 24. Comparison of density distributions along the centerline.

constructed for the unstructured grid by using more information, for instance, gradient of
flow variables.

Second, unlike most upwind schemes which incorporate implicit artificial dissipation, the
present approach uses an explicit one. The explicit dissipation is relatively easily controlled
for interested flow phenomena, such as slipstreams and vortices. This has been shown to
be the case in the present work. It opens a promising way to switch off artificial viscosity
in the boundary layer when solving the Navier–Stokes equations. The performance of the
approach on the solution of the boundary layer will be investigated and compared with the
popular upwind schemes in the near future.

APPENDIX

We will prove here that the sufficient and necessary condition of a monotonic sequence
u1, u2, . . . ,ui , . . . ,un is that, for any 1< i < n,

φi = |ui+1+ ui−1− 2ui |
ε0+ |ui+1− ui−1| < 1,

whereε0 is an infinitely small positive number.

Proof. Let ui+1/2= ui+1 − ui andui−1/2= ui − ui−1; the statement above is identical
to the sufficient and necessary condition that all members of sequence

u1/2, . . . ,ui−1/2, ui+1/2, . . . ,un−1/2

have the same sign or are equal to 0, is that, for any 1< i < n,

φi = |ui+1/2− ui−1/2|
ε0+ |ui+1/2+ ui−1/2| < 1,

whereε0 is an infinite small positive number.

CONSERVATIVE SMOOTHING ON AN ADAPTIVE GRID 179

On the one hand, if theui+1/2 andui−1/2 have the same sign or are equal to 0, then

φi = ||ui+1/2| − |ui−1/2||
ε0+ |ui+1/2| + |ui−1/2| ,

so

φi < 1.//

On the other hand, givenφi < 1, we will show that nonzeroui+1/2, ui−1/2 with different
signs is not true. If it is true,

φi = |ui+1/2| + |ui−1/2|
ε0+ ||ui+1/2| − |ui−1/2|| ,

so

φi ≥ 1,

which violates the given conditionφi < 1. Soui+1/2, ui−1/2 have the same sign or are equal
to zero. j

ACKNOWLEDGMENTS

We express our thanks to Dr. Z. Jiang, Dr. E. Timofeev, Dr. T. Saito, Professor P. Voinovich, Professor
J. Falcovitz, and J. Schumacher for their discussions and criticisms of the present work.

REFERENCES

1. A. Aoyagi and K. Abe, Runge–Kutta smoother for suppression of computational-mode instability of leapfrog
scheme,J. Comput. Phys.93, 287 (1991).

2. T. V. Bazhenova, L. G. Gvozdeva, and Y. V. Zhilin, Change in the shape of the diffracting shock wave at a
convex corner,Acta Astronautica6, 401 (1979).

3. J. P. Boris and D. L. Book, Flux-corrected transport. I.SHASTA, a fluid transport algorithm that works,
J. Comput. Phys.11, 38 (1973).

4. M. G. Edwards, J. T. Oden, and L. Demkowicz, An h-r adaptive approximate Riemann solver for the Euler
equations in two dimensions,SIAM J. Sci. Comput.14, 185 (1993).

5. B. Engquist, P. Lotstedt, and B. Sjogreen, Nonlinear filters for efficient shock computation,Math. Comput.
52, 509 (1989).

6. A. A. Fursenko, D. M. Sharov, E. V. Timofeev, and P. A. Voinovich, Numerical simulation of shock wave
interactions with channel bends and gas nonuniformities,Comput. Fluids21, 377 (1992).

7. A. A. Fursenko, N. P. Mende, K. Oshima, D. M. Sharov, E. V. Timofeev, and P. A. Voinovich, Numerical
simulation of propagation of shock waves through channel bends,Comput. Fluid Dyn. J.2, 1 (1993).

8. L. Giraud and G. Manzini, Parallel implementations of 2D explicit Euler solvers,J. Comput. Phys.123, 111
(1996).

9. V. P. Goloviznin, A. I. Zhmakin, and A. A. Fursenko, A numerical method for the investigation of discontinuous
flows of relaxing mixtures,Sov. Phys. Dokl.27 (1982).

10. C. Hirsch,Numerical Computational of Internal and External Flows, Vol. 2(Wiley, New York, 1990).

11. Y. Kallinderis and A. Vidwans, Generic parallel adaptive-grid Navier–Stokes algorithm,AIAA J.32, 54 (1994).

12. P. D. Lax and B. Wendroff, Systems of conservation laws,Comm. Pure Appl. Math.13, 217 (1960).

180 SUN AND TAKAYAMA

13. P. L. Roe, Modern shock-capturing schemes, inProc. 18th ISSW, Sendai, edited by K. Takayama (Springer-
Verlag, Berlin/New York, 1991), p. 29.

14. G. H. Schmidt and F. J. Jacobs, Adaptive local grid refinement and multi-grid in numerical reservoir simulation,
J. Comput. Phys.77, 140 (1988).

15. B. K. Shivamoggi,Theoretical Fluid Dynamics(Nijhoff, Dordrecht, 1985).

16. W. Shyy, M. H. Chen, R. Mittal, and H. S. Udaykumar, On the suppression of numerical oscillations using a
nonlinear filter,J. Comput. Phys.102, 49 (1992).

17. G. S. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation
laws,J. Comput. Phys.27, 1 (1978).

18. M. Sun and K. Takayama, A holographic interferometric study of shock wave focusing in a circular reflector,
Shock Waves6, 323 (1996).

19. K. Takayama and Z. Jiang, Shock wave reflection over wedges: A benchmark test for CFD and experiments,
Shock Wave7, 191 (1997).

20. V. Venkatakrishnan, A perspective on unstructured grid flow solvers, AIAA paper 95-0667, 1995.

21. J. von Neumann and R. D. Richtmyer, A method for the numerical calculations of hydrodynamic shocks,
J. Appl. Phys.21, 232 (1950).

22. D. P. Young, R. G. Melvin, and M. B. Bieterman, A locally refined rectangular grid finite element method:
Application to computational fluid dynamics and computational physics,J. Comput. Phys.92, 1 (1991).

23. D. D. Zeeuw and K. G. Powell, An adaptively refined Cartesian mesh solver for the Euler equations,J. Comput.
Phys.104, 56 (1993).

	1. INTRODUCTION
	2. MODEL PROBLEMS
	FIG. 1.
	FIG. 2.
	FIG. 3.

	3. THE VECTORIZED LOCALLY ADAPTIVE ALGORITHM
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.

	4. THE FLOW SOLVER
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.

	5. NUMERICAL EXAMPLES
	FIG. 18.
	FIG. 18—Continued
	FIG. 18—Continued
	FIG. 19.
	FIG. 19—Continued
	FIG. 20.
	FIG. 20—Continued
	FIG. 21.
	FIG. 22.

	6. CONCLUDING REMARKS
	FIG. 23.
	FIG. 23—Continued
	FIG. 24.

	APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

